---
category_name: school
problem_code: GOODSET
problem_name: 'A Good Set'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYPY
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM chicken'
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '1'
source_sizelimit: '50000'
problem_author: admin2
problem_tester: null
date_added: 9-05-2017
tags:
- admin2
time:
view_start_date: 1497259800
submit_start_date: 1497259800
visible_start_date: 1497259800
end_date: 1735669800
current: 1497283936
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin Chinese](http://www.codechef.com/download/translated/JUNE17/mandarin/GOODSET.pdf), [Russian](http://www.codechef.com/download/translated/JUNE17/russian/GOODSET.pdf) and [Vietnamese](http://www.codechef.com/download/translated/JUNE17/vietnamese/GOODSET.pdf) as well.
A set of integers is called _good_ if there does not exist three distinct elements a, b, c in it such that a + b = c.
Your task is simple. Just output any _good_ set of **n** integers. All the elements in this set should be distinct and should lie between 1 and 500, both inclusive.
### Input
- The first line of the input contains an integer **T** denoting number of test cases. The descriptions of **T** test cases follow.
- The only line of each test case contains an integer **n**, denoting the size of the needed _good_ set.
### Output
For each test case, output a single line containing **n** integers denoting the elements of the _good_ set, in any order. There can be more than one possible good set, and you can output any one of them.
### Constraints
- 1 ≤ **T, n** ≤ 100
### Subtasks
- **Subtask #1 (50 points)**: 1 ≤ **T, n** ≤ 10
- **Subtask #2 (50 points)**: original constraints
### Example
<pre>
<b>Input</b>
5
1
2
3
4
5
<b>Output</b>
7
1 2
1 2 4
1 2 4 16
3 2 15 6 10
</pre>### Explanation
**Example 1 and 2.** Any set of size less than or equal to 2 is good by definition.
**Example 3 onwards.** For each pair of elements in the set, you can see that their sum doesn't exist in the set.