---
category_name: hard
problem_code: SERSUM
problem_name: 'Series Sum'
languages_supported:
- C
- CPP14
- JAVA
- PYTH
- 'PYTH 3.5'
- PYPY
- CS2
- 'PAS fpc'
- 'PAS gpc'
- RUBY
- PHP
- GO
- NODEJS
- HASK
- rust
- SCALA
- swift
- D
- PERL
- FORT
- WSPC
- ADA
- CAML
- ICK
- BF
- ASM
- CLPS
- PRLG
- ICON
- 'SCM qobi'
- PIKE
- ST
- NICE
- LUA
- BASH
- NEM
- 'LISP sbcl'
- 'LISP clisp'
- 'SCM guile'
- JS
- ERL
- TCL
- kotlin
- PERL6
- TEXT
- 'SCM chicken'
- CLOJ
- COB
- FS
max_timelimit: '6'
source_sizelimit: '50000'
problem_author: chemthan
problem_tester: null
date_added: 28-02-2018
tags:
- chemthan
- convolution
- fft
- may18
- power
editorial_url: 'https://discuss.codechef.com/problems/SERSUM'
time:
view_start_date: 1526290200
submit_start_date: 1526290200
visible_start_date: 1526290200
end_date: 1735669800
current: 1528985564
is_direct_submittable: false
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin chinese](http://www.codechef.com/download/translated/MAY18/mandarin/SERSUM.pdf), [Russian](http://www.codechef.com/download/translated/MAY18/russian/SERSUM.pdf) and [Vietnamese](http://www.codechef.com/download/translated/MAY18/vietnamese/SERSUM.pdf) as well.
You are given $N$ integers $a\_1, a\_2, \\dots, a\_N$. Let's define functions $f$ and $g$: $$f(x, k) = (x + a\_1)^k + (x + a\_2)^k + \\dots + (x + a\_N)^k$$ $$g(t, k) = f(0, k) + f(1, k) + \\dots + f(t, k)$$ You are also given integers $T$ and $K$. Calculate $g(T, i)$ modulo $10^9 + 7$ for each $i$ between $0$ and $K$ inclusive. ### Input - The first line of the input contains three space-separated integers $N$, $K$ and $T$. - The second line contains $N$ space-separated integers $a\_1, a\_2, \\dots, a\_N$. ### Output Print a single line containing $K+1$ space-separated integers — the values of $g(T, 0), g(T, 1), \\dots, g(T, K)$ modulo $10^9 + 7$. ### Constraints - $1 \\le N \\le 10^5$ - $1 \\le K \\le 5 \\cdot 10^4$ - $1 \\le T \\le 10^{18}$ - $0 \\le a\_i \\lt 10^9 + 7$ ### Subtasks \*\*Subtask #1 (10 points):\*\* $N = 1$ \*\*Subtask #2 (10 points):\*\* $a\_i = a\_1 ^ i$ modulo $10^9 + 7$ for each valid $i$ \*\*Subtask #3 (10 points):\*\* $a\_i = a\_1 + i - 1$ modulo $10^9 + 7$ for each valid $i$ \*\*Subtask #4 (70 points):\*\* original constraints ### Example Input ``` 2 3 4 0 1 ``` ### Example Output ``` 10 25 85 325 ```