---
category_name: medium
problem_code: ONEKING
problem_name: 'One Dimensional Kingdoms'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYPY
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM chicken'
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '2'
source_sizelimit: '50000'
problem_author: nssprogrammer
problem_tester: shiplu
date_added: 2-12-2014
tags:
- easy
- greedy
- jan15
- nssprogrammer
editorial_url: 'http://discuss.codechef.com/problems/ONEKING'
time:
view_start_date: 1421055000
submit_start_date: 1421055000
visible_start_date: 1421055000
end_date: 1735669800
current: 1493557830
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin Chinese](http://www.codechef.com/download/translated/JAN15/mandarin/ONEKING.pdf) and [Russian](http://www.codechef.com/download/translated/JAN15/russian/ONEKING.pdf).
**N** one dimensional kingdoms are represented as intervals of the form **\[ai , bi\]** on the real line.
A kingdom of the form **\[L, R\]** can be destroyed completely by placing a bomb at a point **x** on the real line if **L
≤ x ≤ R**.
Your task is to determine minimum number of bombs required to destroy all the one dimensional kingdoms.
### Input
- First line of the input contains **T** denoting number of test cases.
- For each test case, first line contains **N** denoting the number of one dimensional kingdoms.
- For each next **N** lines, each line contains two space separated integers **ai** and **bi**.
### Output
For each test case , output an integer denoting the minimum number of bombs required.
### Constraints
Subtask 1 (20 points) : **1 ≤ T ≤ 100 , 1 ≤ N ≤ 100 , 0 ≤ ai ≤ bi ≤500**
Subtask 2 (30 points) : **1 ≤ T ≤ 100 , 1 ≤ N ≤ 1000 , 0 ≤ ai ≤ bi ≤ 1000**
Subtask 3 (50 points) : **1 ≤ T ≤ 20 , 1 ≤ N ≤ 105, 0 ≤ ai ≤ bi ≤ 2000**
### Example
<pre><b>Input:</b>
1
3
1 3
2 5
6 9
<b>Output:</b>
2
</pre>### Explanation
There are three kingdoms \[1,3\] ,\[2,5\] and \[6,9\]. You will need at least 2 bombs
to destroy the kingdoms. In one of the possible solutions, you can place two bombs at x = 2 and x = 6 .