---
category_name: medium
problem_code: BORDER
problem_name: 'Prefix borders'
languages_supported:
- C
- CPP14
- JAVA
- PYTH
- 'PYTH 3.5'
- PYPY
- CS2
- 'PAS fpc'
- 'PAS gpc'
- RUBY
- PHP
- GO
- NODEJS
- HASK
- rust
- SCALA
- swift
- D
- PERL
- FORT
- WSPC
- ADA
- CAML
- ICK
- BF
- ASM
- CLPS
- PRLG
- ICON
- 'SCM qobi'
- PIKE
- ST
- NICE
- LUA
- BASH
- NEM
- 'LISP sbcl'
- 'LISP clisp'
- 'SCM guile'
- JS
- ERL
- TCL
- kotlin
- PERL6
- TEXT
- 'SCM chicken'
- CLOJ
- COB
- FS
max_timelimit: '1'
source_sizelimit: '50000'
problem_author: kingofnumbers
problem_tester: mgch
date_added: 21-02-2018
tags:
- binary
- kingofnumbers
- kmp
- ltime57
- medium
- tree
editorial_url: 'https://discuss.codechef.com/problems/BORDER'
time:
view_start_date: 1519491600
submit_start_date: 1519491600
visible_start_date: 1519491600
end_date: 1735669800
current: 1525198948
is_direct_submittable: false
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin chinese](http://www.codechef.com/download/translated/LTIME57/mandarin/BORDER.pdf), [Russian](http://www.codechef.com/download/translated/LTIME57/russian/BORDER.pdf) and [Vietnamese](http://www.codechef.com/download/translated/LTIME57/vietnamese/BORDER.pdf) as well.
Let's define a _border substring_ of a string as a non-empty substring that's both a suffix and a prefix of this string.
You are given a string **S** with length **N** and **Q** queries. In each query, you are given the **p**-th prefix of **S** (let's denote it by **S1..p**) and an integer **k**. Consider the **k**-th shortest border of **S1..p** (if it exists). Compute the length of this border substring or determine that it doesn't exist.
### Input
- The first line of the input contains a single integer **T** denoting the number of test cases. The description of **T** test cases follows.
- The first line of each test case contains two space-separated integers **N** and **Q**.
- The second line contains a single string **S**.
- Each of the following **Q** lines contains two space-separated integers **p** and **k** describing one query.
### Output
For each test case, print **Q** lines. For each **i** (1 ≤ **i** ≤ **Q**), the **i**-th of these lines should contain a single integer — the answer to the **i**-th query (the length of the **k**-th shortest border or -1 if it doesn't exist).
### Constraints
- 1 ≤ **T** ≤ 100
- 1 ≤ **N**, **Q** ≤ 200,000
- **|S|** = **N**
- 1 ≤ sum of **N** over all test cases ≤ 200,000
- 1 ≤ sum of **Q** over all test cases ≤ 200,000
- 1 ≤ **p**, **k** ≤ **N**
- **S** contains only lowercase English letters
### Subtasks
**Subtask #1 (20 points):**
- **Q**, **N** ≤ 100
- sum of **N** over all test cases ≤ 500
- sum of **Q** over all test cases ≤ 500
**Subtask #2 (20 points):**
- **N** ≤ 100
- sum of **N** over all test cases ≤ 500
**Subtask #3 (60 points):** original constraints
### Example
<pre><b>Input:</b>
1
5 4
abcab
2 1
5 1
5 2
5 3
<b>Output:</b>
2
2
5
-1
</pre>