---
category_name: hard
problem_code: ASTRD
problem_name: Asteroids
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYPY
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM chicken'
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '1'
source_sizelimit: '50000'
problem_author: pavel1996
problem_tester: mgch
date_added: 15-09-2015
tags:
- geometry
- hard
- jan16
- pavel1996
editorial_url: 'http://discuss.codechef.com/problems/ASTRD'
time:
view_start_date: 1452504600
submit_start_date: 1452504600
visible_start_date: 1452504600
end_date: 1735669800
current: 1493556613
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin Chinese](http://www.codechef.com/download/translated/JAN16/mandarin/ASTRD.pdf), [Russian](http://www.codechef.com/download/translated/JAN16/russian/ASTRD.pdf) and [Vietnamese](http://www.codechef.com/download/translated/JAN16/vietnamese/ASTRD.pdf) as well.
Your planet is a perfect sphere with radius **R** and center at **(0, 0, 0)**. There are **N** asteroids around the planet. Your task is to find the **minimal** possible number of asteroids you can observe from some point on the suface of the planet. An asteroid can be observed if it's at least **10-3** above the horizon line at the place of the observation.
### Input
The first line of input contains a single integer **T**, denoting the number of testcases.
The first line of each test case contains two space-separated integers, **N** and **R**.
The following **N** lines contains 3 space-separated integers each: coordinates **xi, yi, zi** of the corresponding asteroid.
### Output
For each test case, output one integer in a new line: the answer for the test case.
### Constraints
- **1** ≤ **T** ≤ **10**
- **1** ≤ **R** ≤ **10**
- **R - 1** ≤ **|xi|, |yi|, |zi|** ≤ **50**
- **Subtask 1\[11 points\]:** **1** ≤ **N** ≤ **2**
- **Subtask 2\[89 points\]:** **1** ≤ **N** ≤ **150**
### Example
<pre><b>Input:</b>
1
3 1
2 2 2
0 3 4
4 5 0
<b>Output:</b>
0
</pre>### Sample explanation:
One of the solutions can be: as all the asteroids have positive coordinates, we can choose some point on the surface which lies in the all-negative octant (see octant VII [here](https://en.wikipedia.org/wiki/Octant_%28solid_geometry%29)), and none of the asteroids will be observed.