---
category_name: hard
problem_code: CUTTREE
problem_name: 'Chef Cuts Tree'
languages_supported:
- C
- CPP14
- JAVA
- PYTH
- 'PYTH 3.5'
- PYPY
- CS2
- 'PAS fpc'
- 'PAS gpc'
- RUBY
- PHP
- GO
- NODEJS
- HASK
- rust
- SCALA
- swift
- D
- PERL
- FORT
- WSPC
- ADA
- CAML
- ICK
- BF
- ASM
- CLPS
- PRLG
- ICON
- 'SCM qobi'
- PIKE
- ST
- NICE
- LUA
- BASH
- NEM
- 'LISP sbcl'
- 'LISP clisp'
- 'SCM guile'
- JS
- ERL
- TCL
- kotlin
- PERL6
- TEXT
- 'SCM chicken'
- CLOJ
- COB
- FS
max_timelimit: '2'
source_sizelimit: '50000'
problem_author: jtnydv25
problem_tester: null
date_added: 31-12-2017
tags:
- centroid
- expected
- fft
- hard
- jtnydv25
- march18
- probability
editorial_url: 'https://discuss.codechef.com/problems/CUTTREE'
time:
view_start_date: 1520847000
submit_start_date: 1520847000
visible_start_date: 1520847000
end_date: 1735669800
current: 1525454451
is_direct_submittable: false
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin chinese](http://www.codechef.com/download/translated/MARCH18/mandarin/CUTTREE.pdf), [Russian](http://www.codechef.com/download/translated/MARCH18/russian/CUTTREE.pdf) and [Vietnamese](http://www.codechef.com/download/translated/MARCH18/vietnamese/CUTTREE.pdf) as well.
A forest is an undirected acyclic graph. Let us define the _strength_ of a forest as the sum of squares of sizes of its connected components. (Clearly, a tree with **n** nodes has strength **n2**.)
Chef has found a tree with **N** nodes on day 0. On each of the next **N-1** days, he's going to remove one edge. Let's denote the forest that remains after **i** days by **Fi**, for each 1 โค **i** โค **N-1**; also, let's denote the original tree by **F0**. On day **i**, **Fi** is created by randomly uniformly choosing one edge from **Fi-1** and removing it.
Let **Ei** be the expected value of strength of the forest **Fi**, for each 0 โค **i** โค **N-1**. It can be proven that this number can be written in the form **Pi** / **Qi**, where **gcd**(**Pi**, **Qi**) = 1 and **gcd**(**Qi**, 109 + 7) = 1. Let **Ri** = **Pi** ยท **Qi-1** mod 109 + 7, where **Qi-1** denotes the modular inverse of **Qi** modulo 109 + 7.
Find the values of **R0, R1, ..., RN-1**.
### Input
- The first line of the input contains a single integer **N** โ the number of nodes in the tree.
- **N-1** lines follow. Each of these lines contains two space-separated integers **u** and **v** denoting an edge between nodes **u** and **v** in the tree.
### Output
Print a single line containing **N** space-separated integers **R0, R1, ..., RN-1**.
### Constraints
- 1 โค **N** โค 105
- 1 โค **u**, **v** โค **N**
### Subtasks
**Subtask #1 (25 points):** 1 โค **N** โค 103
**Subtask #2 (75 points):** original constraints
### Example
<pre><b>Input:</b>
5
1 2
1 3
2 4
2 5
<b>Output:</b>
25 16 333333346 7 5
</pre>