---
category_name: hard
problem_code: LKYEDGE
problem_name: 'Lucky Edge'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- COB
- 'CPP 4.3.2'
- 'CPP 6.3'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- kotlin
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYPY
- PYTH
- 'PYTH 3.5'
- RUBY
- rust
- SCALA
- 'SCM chicken'
- 'SCM guile'
- 'SCM qobi'
- ST
- swift
- TCL
- TEXT
- WSPC
max_timelimit: '2'
source_sizelimit: '50000'
problem_author: fudail
problem_tester: alex_2oo8
date_added: 3-10-2017
tags:
- dfs
- fudail
- hard
- oct17
- tree
editorial_url: 'https://discuss.codechef.com/problems/LKYEDGE'
time:
view_start_date: 1508146200
submit_start_date: 1508146200
visible_start_date: 1508146200
end_date: 1735669800
current: 1514817001
layout: problem
---
All submissions for this problem are available.### Read problems statements in [mandarin chinese](http://www.codechef.com/download/translated/OCT17/mandarin/LKYEDGE.pdf), [russian](http://www.codechef.com/download/translated/OCT17/russian/LKYEDGE.pdf) and [vietnamese](http://www.codechef.com/download/translated/OCT17/vietnamese/LKYEDGE.pdf) as well.
In an undirected unweighted graph, an edge of the graph is said to be _lucky_ if it is a part of some cycle of the graph.
You are given a list **E** of **M** edges. We define **f(i)** as the number of intervals **\[l, r\]** (**1 ≤ l ≤ i ≤ r ≤ M**) such that if you build a graph from edges **El, El+1, ..., Er**, the edge **Ei** will be a lucky edge in this graph.
Your task is to calculate the values of **f(1), f(2), ..., f(M)**.
### Input
The first line of the input contains an integer **T** denoting the number of test cases.
The first line of each test case contains a single integer **M** denoting the number of edges.
Each of the next **M** lines contains two space-separated integers **ui** and **vi** denoting that **i**-th edge connects nodes **ui** and **vi**.
### Output
For each test case, output a single line containing **M** integers, i-th of which should be value of **f(i)**.
### Constraints
- **1** ≤ **T** ≤ **50**
- **1** ≤ **M** ≤ **5,000**
- **1** ≤ sum of **M** over all test-cases ≤ **20,000**
- **1** ≤ **ui**, **vi** ≤ **10,000**
- **ui** ≠ **vi**
### Subtasks
- **Subtask #1 (10 points):** **M** ≤ 200 and sum of **M** ≤ 2,300
- **Subtask #2 (20 points):** **M** ≤ 1,000 and sum of **M** ≤ 4,000
- **Subtask #3 (70 points):** Original constraints
### Example
<pre><b>Input:</b>
2
3
1 2
3 4
2 1
5
1 2
2 3
3 4
1 4
4 2
<b>Output:</b>
1 0 1
2 3 3 2 2
</pre>