---
category_name: easy
problem_code: BEARSEG
problem_name: 'Bear and Segments'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYPY
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM chicken'
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '2'
source_sizelimit: '50000'
problem_author: admin2
problem_tester: lg5293
date_added: 29-04-2017
tags:
- admin2
- bst
- easy
- ltime47
- partial
time:
view_start_date: 1493485200
submit_start_date: 1493485200
visible_start_date: 1493485200
end_date: 1735669800
current: 1497284055
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin Chinese](http://www.codechef.com/download/translated/LTIME47/mandarin/BEARSEG.pdf), [Russian](http://www.codechef.com/download/translated/LTIME47/russian/BEARSEG.pdf) and [Vietnamese](http://www.codechef.com/download/translated/LTIME47/vietnamese/BEARSEG.pdf) as well.
Bear Limak has a sequence of **N** non-negative integers **A**1, **A**2, ..., **AN**. He defines the score of a segment (consecutive subsequence) as its sum of elements modulo **P** (not necessarily prime). Find the maximum score of a non-empty segment, and also find the number of segments with this maximum score.
### Input
First line of the input contains an integer **T** denoting the number of test cases. The description of **T** test cases follows.
For each test case, the first line of the input contains two space separated integers, **N** and **P**.
The second line contains **N** space separated integers denoting the sequence.
### Output
For each test case, output two space separated integers denoting the maximum score of a segment and the number of segments with the score, respectively.
### Constraints
- 1 ≤ **T** ≤ 10
- 1 ≤ **N** ≤ 105
- 1 ≤ **P** ≤ 109
- 0 ≤ **A**i ≤ 109
**Subtask #1: (25 points)**
- 1 ≤ **N** ≤ 100
**Subtask #2: (25 points)**
- 1 ≤ **N** ≤ 1000
**Subtask #3: (50 points)**
- original constraints
### Example
<pre><b>Input:</b>
4
2 3
1 2
3 5
2 4 3
3 100
1 3 5
4 3
1 2 3 4
<b>Output:</b>
2 1
4 2
9 1
2 2
</pre>### Explanation
**Example case 1.** There are three segments - \[1\], \[2\] and \[1, 2\]. Sum of these segments are 1, 2 and 3 respectively. Sum of these segments modulo 3 will be 1, 2 and 0. Maximum score among these is 2. There is also only one segment with this score.
**Example case 2.** There are six segments - \[2\], \[4\], \[3\], \[2, 4\], \[4, 3\] and \[2, 4, 3\]. Sum of these segments are 2, 4, 3, 6, 7, 9 respectively. Sum of these segments modulo 5 will be 2, 4, 3, 1, 2, 4. Maximum score among these is 4. And there are two segments with this score.