---
category_name: hard
problem_code: GRAPHCNT
problem_name: 'Counting on a directed graph'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYPY
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM chicken'
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '2'
source_sizelimit: '50000'
problem_author: ztxz16
problem_tester: kevinsogo
date_added: 25-03-2015
tags:
- dominator
- may15
- medium
- ztxz16
editorial_url: 'http://discuss.codechef.com/problems/GRAPHCNT'
time:
view_start_date: 1431941400
submit_start_date: 1431941400
visible_start_date: 1431941400
end_date: 1735669800
current: 1493556724
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin Chinese](http://www.codechef.com/download/translated/MAY15/mandarin/GRAPHCNT.pdf) and [Russian](http://www.codechef.com/download/translated/MAY15/russian/GRAPHCNT.pdf).
Given an directed graph with **N** nodes (numbered from 1 to **N**) and **M** edges, calculate the number of unordered pairs **(X, Y)** such there exist two paths, one from node 1 to node **X**, and another one from node 1 to node **Y**, such that they don't share any node except node 1.
### Input
There is only one test case in one test file.
The first line of each test case contains two space separated integers **N, M**. Each of the next M lines contains two space separated integers **u, v** denoting a directed edge of graph G, from node **u** to node **v**. There are no multi-edges and self loops in the graph.
### Output
Print a single integer corresponding to the number of unordered pairs as asked in the problem..
### Constraints and Subtasks
- **1 ≤ N ≤ 105**
- **0 ≤ M ≤ 5 \* 105**
**Subtask 1: (30 points)**
- The graph is a [Directed Acyclic Graph (DAG)](http://en.wikipedia.org/wiki/Directed_acyclic_graph) i.e. there is no cycle in the graph.
**Subtask 2: (20 points)**
- N \* M ≤ 50000000
**Subtask 3 (50 points)**
- No additional constraints
### Example
<pre><b>Input:</b>
6 6
1 2
1 3
1 4
2 5
2 6
3 6
<b>Output:</b>
14
</pre>### Explanation
There are 14 pairs of vertices as follows:
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
(2,3)
(2,4)
(2,6)
(3,4)
(3,5)
(3,6)
(4,5)
(4,6)
(5,6)