---
category_name: hard
problem_code: SLIS
problem_name: 'Second LIS'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYPY
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM chicken'
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '3'
source_sizelimit: '50000'
problem_author: shangjingbo
problem_tester: null
date_added: 9-10-2015
tags:
- cook63
- medium
- segment
- shangjingbo
editorial_url: 'http://discuss.codechef.com/problems/SLIS'
time:
view_start_date: 1445193000
submit_start_date: 1445193000
visible_start_date: 1445193000
end_date: 1735669800
current: 1493556846
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin Chinese](http://www.codechef.com/download/translated/COOK63/mandarin/SLIS.pdf) and [Russian](http://www.codechef.com/download/translated/COOK63/russian/SLIS.pdf) as well.
Given a sequence of **n** numbers **A**\[**1**..**n**\], a length-**k** increasing subsequence (IS) is **A**\[**i**1\], **A**\[**i**2\], ..., **A**\[**i**k\] such that both the indices **i** and values are strictly increasing. Among all possible IS's, denote the maximum length as **L**. Now we are interested in finding how many length-**(L-1)** IS's are there.
Two IS's are different if and only if their indices are different.
Since the answer could be very large, you are just required to output its remainder with **10^9 + 7**.
### Input
The first line contains an integer **T** denoting the total number of test cases.
For each test case, the first line contains a single integer **n**, and the second line contains the space-separated sequence **A**\[**1**..**n**\].
### Output
For each test case, output the answer per line.
### Constraints
- **1** <= **T** <= **10**
- **1** <= **n** <= **10^5**
- **1** <= **A**\[**i**\] <= **10^9**
- **1** < **L**
### Example
<pre><b>Input:</b>
3
3
1 1 2
5
6 8 1 2 3
5
2 3 1 6 8
<b>Output:</b>
3
4
5
</pre>### Explanation
**Example case 1.** **L** = 2. There are 3 different length-1 IS's.