---
category_name: easy
problem_code: PLANEDIV
problem_name: 'Plane Division'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYPY
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM chicken'
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '1'
source_sizelimit: '50000'
problem_author: cenadar
problem_tester: xcwgf666
date_added: 19-09-2015
tags:
- cenadar
- dec15
- euclidean
- gcd
- parallel
- sets
- simple
- sorting
editorial_url: 'http://discuss.codechef.com/problems/PLANEDIV'
time:
view_start_date: 1450085400
submit_start_date: 1450085400
visible_start_date: 1450085400
end_date: 1735669800
current: 1493558174
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin Chinese](http://www.codechef.com/download/translated/DEC15/mandarin/PLANEDIV.pdf), [Russian](http://www.codechef.com/download/translated/DEC15/russian/PLANEDIV.pdf) and [Vietnamese](http://www.codechef.com/download/translated/DEC15/vietnamese/PLANEDIV.pdf) as well.
Chef is working with lines on a 2-D plane.
He knows that every line on a plane can be clearly defined by three coefficients **A**, **B** and **C**: any point **(x, y)** lies on the line if and only if **A \* x + B \* y + C = 0**.
Let's call a set of lines to be _perfect_ if there does not exist a point that belongs to two or more distinct lines of the set.
He has a set of lines on a plane and he wants to find out the size of the largest _perfect_ subset of this set.
### Input
The first line of input contains one integers **T** denoting the number of test cases.
Each test case consists of one integer **N** denoting number of lines.
Next **N** lines contain **3** space-separated integers each denoting coefficients **A**, **B** and **C** respectively.
### Output
For each test case output the cardinality of the largest perfect subset in a single line.
### Constraints
- **1** ≤ **N** ≤ **Nmax**
- Sum over all **N** for all test cases ≤ **NSmax**
- **|A|, |B|, |C|** ≤ **109**
- For a line with coefficients **A**, **B** and **C** either **A** or **B** is not zero.
### Subtasks
- **Subtask #1 \[35 points\]: Nmax = 5000, NSmax = 50000**
- **Subtask #2 \[65 points\]: Nmax = NSmax = 105**
### Example
<pre><b>Input:</b>
<tt>1
5
1 0 0
1 2 3
3 4 5
30 40 0
30 40 50</tt>
<b>Output:</b>
<tt>2</tt>
</pre>### Explanation
Lines **3\*x + 4\*y + 5 = 0** and **30\*x + 40\*y + 0 = 0** form a biggest perfect subset.