---
category_name: hard
problem_code: INVBINCF
problem_name: 'Inverse Binomial Coefficient'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '4'
source_sizelimit: '50000'
problem_author: anton_lunyov
problem_tester: laycurse
date_added: 11-03-2013
tags:
- anton_lunyov
- april13
- factorial
- hard
- modulo
editorial_url: 'http://discuss.codechef.com/problems/INVBINCF'
time:
view_start_date: 1366018200
submit_start_date: 1366018200
visible_start_date: 1366018200
end_date: 1735669800
current: 1493556731
layout: problem
---
All submissions for this problem are available.The binomial coefficient **C(N, K)** is defined as **N! / K! / (N − K)!** for **0 ≤ K ≤ N**.
Here **N! = 1 \* 2 \* ... \* N** for **N ≥ 1**, and **0! = 1**./>
You are given integers **n** and **R**.
You need to find the smallest **K** in the range **{0, 1, ..., 2n − 1}**, for which **C(2n − 1, K) mod 2n = R**.
Here **A mod B** denotes the remainder of the division of **A** by **B**. If no such **K** exists output **-1**./>/>
### Input
The first line of the input contains an integer **T**, denoting the number of test cases.
The description of **T** test cases follows.
The only line of each test case contains two space-separated integers **n** and **R**./>/>
### Output
For each test case output the answer on the separate line.
### Constraints
- **1** ≤ **T** ≤ **100**
- **1** ≤ **n** ≤ **120**
- 0 ≤ **R** < **2n**
### Example
<pre>
<b>Input:</b>
4
1 0
1 1
3 7
4 3
<b>Output:</b>
-1
0
1
7
</pre>### Explanation
**Example case 1.** We have **C(1, 0) = C(1, 1) = 1**. Hence **C(1, K) mod 2 ≠ 0** for all **K**. Therefore, the answer is **-1**.
**Example case 2.** Since **C(1, 0) mod 2 = 1**, the answer is 0.
**Example case 3.** Since **C(7, 0) mod 8 = 1 ≠ 7** and **C(7, 1) mod 8 = 7 mod 8 = 7**, the answer is **1**.
**Example case 4.** Here **C(15, 7) mod 16 = 15! / 7! / 8! mod 16 = 6435 mod 16 = 3**. It can be shown that for all smaller values of **K** we have **C(15, K) mod 16 ≠ 3**. Therefore, the answer is **7**.