---
category_name: medium
problem_code: TREE
problem_name: 'Tree Counting'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '1'
source_sizelimit: '50000'
problem_author: shangjingbo
problem_tester: pieguy
date_added: 5-11-2012
tags:
- easy
- kirchhoff
- maths
- may13
- shangjingbo
editorial_url: 'http://discuss.codechef.com/problems/TREE'
time:
view_start_date: 1368441297
submit_start_date: 1368441297
visible_start_date: 1368441000
end_date: 1735669800
current: 1493557976
layout: problem
---
All submissions for this problem are available.Let's define a good tree:
1. It is a tree with **k \* n** nodes labeled from 0 to **k \* n - 1**
2. Node **i** and node **j** are not adjacent, for all **0 <= i, j < k \* n** such that **i div k = j div k** (here **div** means integer division. E.g. 7 **div** 2 = 3)
Given **n** and **k**, how many different good trees are there?
### Input
Two integers **n(1 <= n <= 10^5), k(1<= k <=3)**
### Output
Output the number of different good trees. As the result may be very large, just output the remainder when divided by (10^9 + 7).
### Example
<pre>
<b>Input 1:</b>
2 2
<b>Output 1:</b>
4
<b>Input 2:</b>
1 2
<b>Output 2:</b>
0
<b>Input 3:</b>
4 1
<b>Output 3:</b>
16
</pre>