---
category_name: easy
problem_code: MAANDI
problem_name: 'Maxim and Dividers'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '1'
source_sizelimit: '50000'
problem_author: sereja
problem_tester: shangjingbo
date_added: 25-05-2013
tags:
- divisors
- number
- oct13
- sereja
- simple
editorial_url: 'http://discuss.codechef.com/problems/MAANDI'
time:
view_start_date: 1381743000
submit_start_date: 1381743000
visible_start_date: 1381743000
end_date: 1735669800
current: 1493558166
layout: problem
---
All submissions for this problem are available.### Read problems statements in Mandarin Chinese [here](http://www.codechef.com/download/translated/OCT13/mandarin/MAANDI.pdf)
### Problem Statement
Maxim likes dividers of the numbers. Also Maxim is fond of **lucky numbers** of small elephant from Lviv city. If you remember, **lucky numbers** are positive integers whose decimal representation contains only the lucky digits **4** and **7**. For example, numbers **47**, **744**, **4** are lucky, **5**, **17**, **467** — aren't. Now Maxim is interested in the next information: what is the number of the integer positive dividers of number **n**, which are **overlucky**. We call number **overlucky** if it is possible to remove some, but not all, digits and during bonding the remaining digits we will receive a lucky number. For example, number **72344** — overlucky, because it is possible to remove digits **2** and **3**, and get number **744**, which is lucky. Number **223** isn't overlucky.
### Input
The first line of the input contains an integer **T** denoting the number of test cases. The description of **T** test cases follows. Single line of each test case contains an integer **n**.
### Output
For each test case on different lines print the answer to the problem.
### Constraints
- **1** ≤ **T** ≤ **10**
- **1** ≤ **n** ≤ **10^9**
### Example
<pre><b>Input:</b>
10
1
2
3
4
5
6
7
8
9
10
<b>Output:</b>
0
0
0
1
0
0
1
1
0
0
</pre>