---
category_name: easy
problem_code: PERMEXIS
problem_name: 'Watson asks Does Permutation Exist'
languages_supported:
- ADA
- ASM
- BASH
- BF
- C
- 'C99 strict'
- CAML
- CLOJ
- CLPS
- 'CPP 4.3.2'
- 'CPP 4.9.2'
- CPP14
- CS2
- D
- ERL
- FORT
- FS
- GO
- HASK
- ICK
- ICON
- JAVA
- JS
- 'LISP clisp'
- 'LISP sbcl'
- LUA
- NEM
- NICE
- NODEJS
- 'PAS fpc'
- 'PAS gpc'
- PERL
- PERL6
- PHP
- PIKE
- PRLG
- PYPY
- PYTH
- 'PYTH 3.4'
- RUBY
- SCALA
- 'SCM chicken'
- 'SCM guile'
- 'SCM qobi'
- ST
- TCL
- TEXT
- WSPC
max_timelimit: '1'
source_sizelimit: '50000'
problem_author: darkshadows
problem_tester: null
date_added: 27-09-2016
tags:
- cook75
- darkshadows
- logic
- simple
- sorting
time:
view_start_date: 1477247400
submit_start_date: 1477247400
visible_start_date: 1477247400
end_date: 1735669800
current: 1493558217
layout: problem
---
All submissions for this problem are available.### Read problems statements in [Mandarin Chinese](http://www.codechef.com/download/translated/COOK75/mandarin/PERMEXIS.pdf), [Russian](http://www.codechef.com/download/translated/COOK75/russian/PERMEXIS.pdf) and [Vietnamese](http://www.codechef.com/download/translated/COOK75/vietnamese/PERMEXIS.pdf) as well.
Watson gives an array **A** of **N** integers **A1, A2, ..., AN** to Sherlock. He wants Sherlock to reorganize the array in a way such that no two adjacent numbers differ by more than 1.
Formally, if reorganized array is **B1, B2, ..., BN**, then the condition that **| Bi - Bi + 1 | ≤ 1**, for all **1 ≤ i < N**(where **|x|** denotes the absolute value of **x**) should be met.
Sherlock is not sure that a solution exists, so he asks you.
### Input
First line contains **T**, number of test cases. Each test case consists of **N** in one line followed by **N** integers in next line denoting **A1, A2, ..., AN**.
### Output
For each test case, output in one line **YES** or **NO** denoting if array **A** can be reorganized in required way or not.
### Constraints
- **1** ≤ **T** ≤ **100**
- **1** ≤ **N** ≤ **105**
- **1** ≤ **Ai** ≤ **109**
- Sum of **N** over all test cases ≤ **2\*105**
### Example
<pre><b>Input:</b>
2
4
3 2 2 3
2
1 5
<b>Output:</b>
YES
NO
</pre>### Explanation
Test case 1:
No need to reorganise.
Test case 2:
No possible way.