boardgame2vec/gothok/game.py

179 lines
4.6 KiB
Python

#!/usr/bin/env python
import capnp
import state_capnp as game
class State():
def initBoard(self):
self.board = [[None]*6 for _ in range(6)]
for card in self.state.cardlist:
if (card.location.board):
x = card.location.board.x
y = card.location.board.y
self.board[x][y] = card
def __init__(self, state):
self.state = state
self.initBoard()
pass
def findVarys(self):
for card in self.state.cardlist:
if card.house == 'varys':
return card.location
def getPossibleMoves(self):
moves = []
for x in range(0, 5):
for y in range(0, 5):
if (self.isLegalMoveLocation(x, y)):
moves.append((x, y))
return moves
def isLegalMoveLocation(self, x, y):
varys = self.findVarys()
vx = varys.board.x
vy = varys.board.y
# Row/Column must match
if (vx == x and vy == y):
return False
if (vx == x):
# Generate all y between y and vy
# See if this is the furthest for this card type
# newCardType = self.board
if (vy > y):
l = [(x, i) for i in range(0, vy)]
else:
l = [(x, i) for i in range(vy+1, 6)]
l.reverse()
elif (vy == y):
# Generate all x between x and vx
if (vx > x):
l = [(i, y) for i in range(0, vx)]
else:
l = [(i, y) for i in range(vx+1, 6)]
l.reverse()
pass
else:
return False
seen = {}
for (xx, yy) in l:
house = self.board[xx][yy].house
if str(house) in seen:
return False
# We stop testing as soon as we reach the new location
if (x == xx and y == yy):
return True
seen[str(house)] = True
class GameNode(object):
"""docstring for GameNode"""
def __init__(self, state, parent):
super(GameNode, self).__init__()
self.state = state
self.parent = parent
self.hits = 0
self.misses = 0
self.totalTrials = 0
def backPropagate(self, simulation):
if (simulation > 0):
self.hits += 1
elif (simulation < 0):
self.misses += 1
self.totalTrials += 1
if self.parent:
self.parent.backPropagate(-simulation)
def childPotential(self, child):
w = child.misses
n = child.totalTrials
# Chosen empirically
c = math.sqrt(2)
t = self.totalTrials
return (w / n) + (c * math.sqrt(log(t) / n))
def runSimulation(self):
self.backPropagate(self.simulate())
def simulate(self):
state = self.state
while not state.gameOver:
moves = state.getPossibleMoves()
randomMove = random.choice(possibleMoves)
state.playMove(randomMove)
return self.state.result(state)
def getChildren(self):
possibleMoves = self.state.getPossibleMoves()
children = []
for move in possibleMoves:
newState = self.state.playMove(move)
childNode = GameNode(newState, self.state)
children.append(childNode)
return children
def chooseChild(self):
# Define children nodes
if(not self.children):
self.children = self.getChildren()
# Run simulation on leaf nodes
if(len(self.children) == 0):
self.runSimulation()
else:
unexplored = []
# Get all unexplored nodes
for child in self.children:
if (child.totalTrials == 0):
unexplored.append(child)
# Pick a random unexplored node
# and run the simulation on it
if (len(unexplored) > 0):
random.choice(unexplored).runSimulation()
else:
# Find the best child
bestChild = self.children[0]
bestPotential = self.childPotential(bestChild)
for child in self.children:
potential = self.childPotential(child)
if (potential > bestPotential):
bestPotential = potential
bestChild = child
bestChild.chooseChild()
f = open('state.bin', 'rb')
initial_state = game.State.read_packed(f)
# print(initial_state)
s = State(initial_state)
print((s.getPossibleMoves()))
# 3,2