Add yea of publication. Somewhat heuristic
Ref: https://social.treehouse.systems/@xrisk/114318053607955892
Diff
README.md | 532 +++++++++++++++++++++++++++++++++++++++++++++-----------------------------------
boardgame-research.rdf | 2 +-
to-markdown.xsl | 60 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--
3 files changed, 320 insertions(+), 274 deletions(-)
@@ -76,366 +76,366 @@
# 2048
- [Systematic Selection of N-Tuple Networks for 2048](https://doi.org/10.1007%2F978-3-319-50935-8_8) (bookSection)
- [Systematic selection of N-tuple networks with consideration of interinfluence for game 2048](https://doi.org/10.1109%2Ftaai.2016.7880154) (conferencePaper)
- [An investigation into 2048 AI strategies](https://doi.org/10.1109%2Fcig.2014.6932920) (conferencePaper)
- [Threes!, Fives, 1024!, and 2048 are Hard](http://arxiv.org/abs/1505.04274v1) (journalArticle)
- [Making Change in 2048](http://arxiv.org/abs/1804.07396v1) (journalArticle)
- [Analysis of the Game "2048" and its Generalization in Higher Dimensions](http://arxiv.org/abs/1804.07393v2) (journalArticle)
- [Multi-Stage Temporal Difference Learning for 2048-like Games](http://arxiv.org/abs/1606.07374v2) (journalArticle)
- [2048 is (PSPACE) Hard, but Sometimes Easy](http://arxiv.org/abs/1408.6315v1) (journalArticle)
- [Temporal difference learning of N-tuple networks for the game 2048](http://ieeexplore.ieee.org/document/6932907/) (conferencePaper)
- [On the Complexity of Slide-and-Merge Games](http://arxiv.org/abs/1501.03837) (journalArticle)
- [2048 Without New Tiles Is Still Hard](http://drops.dagstuhl.de/opus/volltexte/2016/5885/) (journalArticle)
- [Systematic Selection of N-Tuple Networks for 2048](https://doi.org/10.1007%2F978-3-319-50935-8_8) (bookSection 2016)
- [Systematic selection of N-tuple networks with consideration of interinfluence for game 2048](https://doi.org/10.1109%2Ftaai.2016.7880154) (conferencePaper 2016)
- [An investigation into 2048 AI strategies](https://doi.org/10.1109%2Fcig.2014.6932920) (conferencePaper 2014)
- [Threes!, Fives, 1024!, and 2048 are Hard](http://arxiv.org/abs/1505.04274v1) (journalArticle 2015)
- [Making Change in 2048](http://arxiv.org/abs/1804.07396v1) (journalArticle 2018)
- [Analysis of the Game "2048" and its Generalization in Higher Dimensions](http://arxiv.org/abs/1804.07393v2) (journalArticle 2018)
- [Multi-Stage Temporal Difference Learning for 2048-like Games](http://arxiv.org/abs/1606.07374v2) (journalArticle 2016)
- [2048 is (PSPACE) Hard, but Sometimes Easy](http://arxiv.org/abs/1408.6315v1) (journalArticle 2014)
- [Temporal difference learning of N-tuple networks for the game 2048](http://ieeexplore.ieee.org/document/6932907/) (conferencePaper 2014)
- [On the Complexity of Slide-and-Merge Games](http://arxiv.org/abs/1501.03837) (journalArticle 2015)
- [2048 Without New Tiles Is Still Hard](http://drops.dagstuhl.de/opus/volltexte/2016/5885/) (journalArticle 2016)
# Accessibility
- [Meeple Centred Design: A Heuristic Toolkit for Evaluating the Accessibility of Tabletop Games](http://link.springer.com/10.1007/s40869-018-0057-8) (journalArticle)
- [Eighteen Months of Meeple Like Us: An Exploration into the State of Board Game Accessibility](http://link.springer.com/10.1007/s40869-018-0056-9) (journalArticle)
- [Meeple Centred Design: A Heuristic Toolkit for Evaluating the Accessibility of Tabletop Games](http://link.springer.com/10.1007/s40869-018-0057-8) (journalArticle 2018)
- [Eighteen Months of Meeple Like Us: An Exploration into the State of Board Game Accessibility](http://link.springer.com/10.1007/s40869-018-0056-9) (journalArticle 2018)
# Azul
- [A summary of a dissertation on Azul](https://old.reddit.com/r/boardgames/comments/hxodaf/update_i_wrote_my_dissertation_on_azul/) (report)
- [Ceramic: A research environment based on the multi-player strategic board game Azul](https://ipsj.ixsq.nii.ac.jp/ej/?action=repository_action_common_download&item_id=207669&item_no=1&attribute_id=1&file_no=1) (conferencePaper)
- [Ceramic: A research environment based on the multi-player strategic board game Azul](https://github.com/Swynfel/ceramic) (computerProgram)
- [A summary of a dissertation on Azul](https://old.reddit.com/r/boardgames/comments/hxodaf/update_i_wrote_my_dissertation_on_azul/) (report )
- [Ceramic: A research environment based on the multi-player strategic board game Azul](https://ipsj.ixsq.nii.ac.jp/ej/?action=repository_action_common_download&item_id=207669&item_no=1&attribute_id=1&file_no=1) (conferencePaper )
- [Ceramic: A research environment based on the multi-player strategic board game Azul](https://github.com/Swynfel/ceramic) (computerProgram )
# Blokus
- [FPGA Blokus Duo Solver using a massively parallel architecture](http://ieeexplore.ieee.org/document/6718426/) (conferencePaper)
- [Blokus Duo game on FPGA](http://ieeexplore.ieee.org/document/6714256/) (conferencePaper)
- [Algorithm Modeling for Hardware Implementation of a Blokus Duo Player](http://artemis.library.tuc.gr/DT2014-0060/DT2014-0060.pdf) (thesis)
- [Artificial Intelligence for Blokus Classic using Heuristics, FloodFill, and Greedy Algorithm](https://ejournal-medan.uph.edu/index.php/ISD/article/view/433) (journalArticle)
- [FPGA implementation of Blokus Duo player using hardware/software co-design](http://ieeexplore.ieee.org/document/7082825/) (conferencePaper)
- [Exploring Combinatorics and Graph Theory with Simple Blokus](https://www.tandfonline.com/doi/full/10.1080/07468342.2022.2100147) (journalArticle)
- [An FPGA-based specific processor for Blokus Duo](http://ieeexplore.ieee.org/document/6718428/) (conferencePaper)
- [Blokus Game Solver](https://digitalcommons.calpoly.edu/cpesp/290/) (report)
- [Highly scalable, shared-memory, Monte-Carlo tree search based Blokus Duo Solver on FPGA](http://ieeexplore.ieee.org/document/7082823/) (conferencePaper)
- [Implementation of a highly scalable blokus duo solver on FPGA](http://ieeexplore.ieee.org/document/6718423/) (conferencePaper)
- [An implementation of Blokus Duo player on FPGA](http://ieeexplore.ieee.org/document/6718429/) (conferencePaper)
- [The Liquid Metal Blokus Duo Design](http://ieeexplore.ieee.org/document/6718425/) (conferencePaper)
- [Artificial intelligence of Blokus Duo on FPGA using Cyber Work Bench](http://ieeexplore.ieee.org/document/6718427/) (conferencePaper)
- [Hardware/software co-design architecture for Blokus Duo solver](http://ieeexplore.ieee.org/document/7082820/) (conferencePaper)
- [From C to Blokus Duo with LegUp high-level synthesis](http://ieeexplore.ieee.org/document/6718424/) (conferencePaper)
- [Blokus Duo engine on a Zynq](http://ieeexplore.ieee.org/document/7082824/) (conferencePaper)
- [Optimize MinMax algorithm to solve Blokus Duo game by HDL](http://ieeexplore.ieee.org/document/7082821/) (conferencePaper)
- [A Case Study of FPGA Blokus Duo Solver by System-Level Design](https://dl.acm.org/doi/10.1145/2693714.2693725) (journalArticle)
- [FPGA Blokus Duo Solver using a massively parallel architecture](http://ieeexplore.ieee.org/document/6718426/) (conferencePaper 2013)
- [Blokus Duo game on FPGA](http://ieeexplore.ieee.org/document/6714256/) (conferencePaper 2013)
- [Algorithm Modeling for Hardware Implementation of a Blokus Duo Player](http://artemis.library.tuc.gr/DT2014-0060/DT2014-0060.pdf) (thesis )
- [Artificial Intelligence for Blokus Classic using Heuristics, FloodFill, and Greedy Algorithm](https://ejournal-medan.uph.edu/index.php/ISD/article/view/433) (journalArticle 2021)
- [FPGA implementation of Blokus Duo player using hardware/software co-design](http://ieeexplore.ieee.org/document/7082825/) (conferencePaper 2014)
- [Exploring Combinatorics and Graph Theory with Simple Blokus](https://www.tandfonline.com/doi/full/10.1080/07468342.2022.2100147) (journalArticle 2022)
- [An FPGA-based specific processor for Blokus Duo](http://ieeexplore.ieee.org/document/6718428/) (conferencePaper 2013)
- [Blokus Game Solver](https://digitalcommons.calpoly.edu/cpesp/290/) (report 2018)
- [Highly scalable, shared-memory, Monte-Carlo tree search based Blokus Duo Solver on FPGA](http://ieeexplore.ieee.org/document/7082823/) (conferencePaper 2014)
- [Implementation of a highly scalable blokus duo solver on FPGA](http://ieeexplore.ieee.org/document/6718423/) (conferencePaper 2013)
- [An implementation of Blokus Duo player on FPGA](http://ieeexplore.ieee.org/document/6718429/) (conferencePaper 2013)
- [The Liquid Metal Blokus Duo Design](http://ieeexplore.ieee.org/document/6718425/) (conferencePaper 2013)
- [Artificial intelligence of Blokus Duo on FPGA using Cyber Work Bench](http://ieeexplore.ieee.org/document/6718427/) (conferencePaper 2013)
- [Hardware/software co-design architecture for Blokus Duo solver](http://ieeexplore.ieee.org/document/7082820/) (conferencePaper 2014)
- [From C to Blokus Duo with LegUp high-level synthesis](http://ieeexplore.ieee.org/document/6718424/) (conferencePaper 2013)
- [Blokus Duo engine on a Zynq](http://ieeexplore.ieee.org/document/7082824/) (conferencePaper 2014)
- [Optimize MinMax algorithm to solve Blokus Duo game by HDL](http://ieeexplore.ieee.org/document/7082821/) (conferencePaper 2014)
- [A Case Study of FPGA Blokus Duo Solver by System-Level Design](https://dl.acm.org/doi/10.1145/2693714.2693725) (journalArticle 2014)
# Carcassonne
- [Playing Carcassonne with Monte Carlo Tree Search](http://arxiv.org/abs/2009.12974) (journalArticle)
- [On the Evolution of the MCTS Upper Confidence Bounds for Trees by Means of Evolutionary Algorithms in the Game of Carcassonne](http://arxiv.org/abs/2112.09697) (journalArticle)
- [Evolving the MCTS Upper Confidence Bounds for Trees Using a Semantic-inspired Evolutionary Algorithm in the Game of Carcassonne](http://arxiv.org/abs/2208.13589) (preprint)
- [Playing Carcassonne with Monte Carlo Tree Search](http://arxiv.org/abs/2009.12974) (journalArticle 2020)
- [On the Evolution of the MCTS Upper Confidence Bounds for Trees by Means of Evolutionary Algorithms in the Game of Carcassonne](http://arxiv.org/abs/2112.09697) (journalArticle 2021)
- [Evolving the MCTS Upper Confidence Bounds for Trees Using a Semantic-inspired Evolutionary Algorithm in the Game of Carcassonne](http://arxiv.org/abs/2208.13589) (preprint 2022)
# Crew, The
- [The Crew: The Quest for Planet Nine is NP-Complete](http://arxiv.org/abs/2110.11758) (preprint)
- [Generating Solutions to The Crew: The Quest for Planet Nine](https://theboardgamescholar.com/2021/01/17/generating-solutions-to-the-crew-the-quest-for-planet-nine-part-1/) (blogPost)
- [The Crew: The Quest for Planet Nine is NP-Complete](http://arxiv.org/abs/2110.11758) (preprint 2021)
- [Generating Solutions to The Crew: The Quest for Planet Nine](https://theboardgamescholar.com/2021/01/17/generating-solutions-to-the-crew-the-quest-for-planet-nine-part-1/) (blogPost )
# Diplomacy
- [Learning to Play No-Press Diplomacy with Best Response Policy Iteration](http://arxiv.org/abs/2006.04635v2) (journalArticle)
- [No Press Diplomacy: Modeling Multi-Agent Gameplay](http://arxiv.org/abs/1909.02128v2) (journalArticle)
- [Agent Madoff: A Heuristic-Based Negotiation Agent For The Diplomacy Strategy Game](http://arxiv.org/abs/1902.06996v1) (journalArticle)
- [Monte Carlo Tree Search for the Game of Diplomacy](https://dl.acm.org/doi/10.1145/3411408.3411413) (conferencePaper)
- [Human-Level Performance in No-Press Diplomacy via Equilibrium Search](http://arxiv.org/abs/2010.02923) (journalArticle)
- [Learning to Play No-Press Diplomacy with Best Response Policy Iteration](http://arxiv.org/abs/2006.04635v2) (journalArticle 2020)
- [No Press Diplomacy: Modeling Multi-Agent Gameplay](http://arxiv.org/abs/1909.02128v2) (journalArticle 2019)
- [Agent Madoff: A Heuristic-Based Negotiation Agent For The Diplomacy Strategy Game](http://arxiv.org/abs/1902.06996v1) (journalArticle 2019)
- [Monte Carlo Tree Search for the Game of Diplomacy](https://dl.acm.org/doi/10.1145/3411408.3411413) (conferencePaper 2020)
- [Human-Level Performance in No-Press Diplomacy via Equilibrium Search](http://arxiv.org/abs/2010.02923) (journalArticle 2021)
# Dixit
- [Creative Captioning: An AI Grand Challenge Based on the Dixit Board Game](http://arxiv.org/abs/2010.00048) (journalArticle)
- [Dixit: Interactive Visual Storytelling via Term Manipulation](http://arxiv.org/abs/1903.02230) (journalArticle)
- [Creative Captioning: An AI Grand Challenge Based on the Dixit Board Game](http://arxiv.org/abs/2010.00048) (journalArticle 2020)
- [Dixit: Interactive Visual Storytelling via Term Manipulation](http://arxiv.org/abs/1903.02230) (journalArticle 2019)
# Dominion
- [Dominion Simulator](https://dominionsimulator.wordpress.com/f-a-q/) (computerProgram)
- [Dominion Simulator Source Code](https://github.com/mikemccllstr/dominionstats/) (computerProgram)
- [Best and worst openings in Dominion](http://councilroom.com/openings) (blogPost)
- [Optimal Card Ratios in Dominion](http://councilroom.com/optimal_card_ratios) (blogPost)
- [Card Winning Stats on Dominion Server](http://councilroom.com/supply_win) (blogPost)
- [Dominion Strategy Forum](http://forum.dominionstrategy.com/index.php) (forumPost)
- [Clustering Player Strategies from Variable-Length Game Logs in Dominion](http://arxiv.org/abs/1811.11273) (journalArticle)
- [Game Balancing in Dominion: An Approach to Identifying Problematic Game Elements](http://cs.gettysburg.edu/~tneller/games/aiagd/papers/EAAI-00039-FordC.pdf) (journalArticle)
- [Playing Various Strategies in Dominion with Deep Reinforcement Learning](https://ojs.aaai.org/index.php/AIIDE/article/view/27518) (journalArticle)
- [Dominion Simulator](https://dominionsimulator.wordpress.com/f-a-q/) (computerProgram )
- [Dominion Simulator Source Code](https://github.com/mikemccllstr/dominionstats/) (computerProgram )
- [Best and worst openings in Dominion](http://councilroom.com/openings) (blogPost )
- [Optimal Card Ratios in Dominion](http://councilroom.com/optimal_card_ratios) (blogPost )
- [Card Winning Stats on Dominion Server](http://councilroom.com/supply_win) (blogPost )
- [Dominion Strategy Forum](http://forum.dominionstrategy.com/index.php) (forumPost )
- [Clustering Player Strategies from Variable-Length Game Logs in Dominion](http://arxiv.org/abs/1811.11273) (journalArticle 2018)
- [Game Balancing in Dominion: An Approach to Identifying Problematic Game Elements](http://cs.gettysburg.edu/~tneller/games/aiagd/papers/EAAI-00039-FordC.pdf) (journalArticle )
- [Playing Various Strategies in Dominion with Deep Reinforcement Learning](https://ojs.aaai.org/index.php/AIIDE/article/view/27518) (journalArticle 2023)
# Flood-It / Mad Virus / Honey Bee
- [The Flood-It game parameterized by the vertex cover number](https://linkinghub.elsevier.com/retrieve/pii/S1571065315001626) (journalArticle)
- [The complexity of flood-filling games on graphs](https://linkinghub.elsevier.com/retrieve/pii/S0166218X11003337) (journalArticle)
- [The complexity of Free-Flood-It on 2 × n boards](https://linkinghub.elsevier.com/retrieve/pii/S0304397513004647) (journalArticle)
- [A Survey on the Complexity of Flood-Filling Games](https://link.springer.com/10.1007/978-3-319-98355-4_20) (bookSection)
- [Flood-it on AT-Free Graphs](http://arxiv.org/abs/1511.01806) (preprint)
- [On Complexity of Flooding Games on Graphs with Interval Representations](http://link.springer.com/10.1007/978-3-642-45281-9_7) (bookSection)
- [Efficient approaches for the Flooding Problem on graphs](http://link.springer.com/10.1007/s10479-018-2796-0) (journalArticle)
- [The Complexity of Flood Filling Games](http://arxiv.org/abs/1001.4420) (preprint)
- [Flood it! An exact approach](https://kunigami.wordpress.com/2012/09/16/flood-it-an-exact-approach/) (blogPost)
- [Exact Approaches for Flood-it: A*, IDA*, a SAT- and ILP-Solver compared](https://doc.neuro.tu-berlin.de/bachelor/2023-BA-PhilippVonManteuffel-mc.pdf) (thesis)
- [An algorithmic analysis of Flood-It and Free-Flood-It on graph powers](https://dmtcs.episciences.org/2086) (journalArticle)
- [Parameterized Complexity of Flood-Filling Games on Trees](http://link.springer.com/10.1007/978-3-642-38768-5_47) (bookSection)
- [An algorithmic analysis of the Honey-Bee game](https://linkinghub.elsevier.com/retrieve/pii/S0304397512005142) (journalArticle)
- [Extremal properties of flood-filling games](http://arxiv.org/abs/1504.00596) (journalArticle)
- [Spanning Trees and the Complexity of Flood-Filling Games](http://link.springer.com/10.1007/s00224-013-9482-z) (journalArticle)
- [Inundação em Grafos / Graph Flooding](https://www.din.uem.br/sbpo/sbpo2012/pdf/arq0510.pdf) (conferencePaper)
- [Flooding games on graphs](https://linkinghub.elsevier.com/retrieve/pii/S0166218X13004290) (journalArticle)
- [Tractability and hardness of flood-filling games on trees](https://linkinghub.elsevier.com/retrieve/pii/S030439751500105X) (journalArticle)
- [The Complexity of Flood Filling Games](http://link.springer.com/10.1007/978-3-642-13122-6_30) (bookSection)
- [Flood-It as a SAT problem](https://www.cs.ru.nl/bachelors-theses/2020/Milan_van_Stiphout___4596269___Flood-It_as_a_SAT_Problem.pdf) (thesis)
- [The Flood-It game parameterized by the vertex cover number](https://linkinghub.elsevier.com/retrieve/pii/S1571065315001626) (journalArticle 2015)
- [The complexity of flood-filling games on graphs](https://linkinghub.elsevier.com/retrieve/pii/S0166218X11003337) (journalArticle 2012)
- [The complexity of Free-Flood-It on 2 × n boards](https://linkinghub.elsevier.com/retrieve/pii/S0304397513004647) (journalArticle 2013)
- [A Survey on the Complexity of Flood-Filling Games](https://link.springer.com/10.1007/978-3-319-98355-4_20) (bookSection 2018)
- [Flood-it on AT-Free Graphs](http://arxiv.org/abs/1511.01806) (preprint 2015)
- [On Complexity of Flooding Games on Graphs with Interval Representations](http://link.springer.com/10.1007/978-3-642-45281-9_7) (bookSection 2013)
- [Efficient approaches for the Flooding Problem on graphs](http://link.springer.com/10.1007/s10479-018-2796-0) (journalArticle 2020)
- [The Complexity of Flood Filling Games](http://arxiv.org/abs/1001.4420) (preprint 2011)
- [Flood it! An exact approach](https://kunigami.wordpress.com/2012/09/16/flood-it-an-exact-approach/) (blogPost 2012)
- [Exact Approaches for Flood-it: A*, IDA*, a SAT- and ILP-Solver compared](https://doc.neuro.tu-berlin.de/bachelor/2023-BA-PhilippVonManteuffel-mc.pdf) (thesis 2023)
- [An algorithmic analysis of Flood-It and Free-Flood-It on graph powers](https://dmtcs.episciences.org/2086) (journalArticle 2014)
- [Parameterized Complexity of Flood-Filling Games on Trees](http://link.springer.com/10.1007/978-3-642-38768-5_47) (bookSection 2013)
- [An algorithmic analysis of the Honey-Bee game](https://linkinghub.elsevier.com/retrieve/pii/S0304397512005142) (journalArticle 2012)
- [Extremal properties of flood-filling games](http://arxiv.org/abs/1504.00596) (journalArticle 2019)
- [Spanning Trees and the Complexity of Flood-Filling Games](http://link.springer.com/10.1007/s00224-013-9482-z) (journalArticle 2014)
- [Inundação em Grafos / Graph Flooding](https://www.din.uem.br/sbpo/sbpo2012/pdf/arq0510.pdf) (conferencePaper 2012)
- [Flooding games on graphs](https://linkinghub.elsevier.com/retrieve/pii/S0166218X13004290) (journalArticle 2014)
- [Tractability and hardness of flood-filling games on trees](https://linkinghub.elsevier.com/retrieve/pii/S030439751500105X) (journalArticle 2015)
- [The Complexity of Flood Filling Games](http://link.springer.com/10.1007/978-3-642-13122-6_30) (bookSection 2010)
- [Flood-It as a SAT problem](https://www.cs.ru.nl/bachelors-theses/2020/Milan_van_Stiphout___4596269___Flood-It_as_a_SAT_Problem.pdf) (thesis 2020)
# Frameworks
- [RLCard: A Toolkit for Reinforcement Learning in Card Games](http://arxiv.org/abs/1910.04376) (journalArticle)
- [Design and Implementation of TAG: A Tabletop Games Framework](http://arxiv.org/abs/2009.12065) (journalArticle)
- [Game Tree Search Algorithms - C++ library for AI bot programming.](https://github.com/AdamStelmaszczyk/gtsa) (computerProgram)
- [TAG: Tabletop Games Framework](https://github.com/GAIGResearch/TabletopGames) (computerProgram)
- [RLCard: A Toolkit for Reinforcement Learning in Card Games](http://arxiv.org/abs/1910.04376) (journalArticle 2020)
- [Design and Implementation of TAG: A Tabletop Games Framework](http://arxiv.org/abs/2009.12065) (journalArticle 2020)
- [Game Tree Search Algorithms - C++ library for AI bot programming.](https://github.com/AdamStelmaszczyk/gtsa) (computerProgram 2015)
- [TAG: Tabletop Games Framework](https://github.com/GAIGResearch/TabletopGames) (computerProgram )
# Game Design
- [MDA: A Formal Approach to Game Design and Game Research](https://aaai.org/Library/Workshops/2004/ws04-04-001.php) (conferencePaper)
- [Exploring anonymity in cooperative board games](http://www.digra.org/digital-library/publications/exploring-anonymity-in-cooperative-board-games/) (conferencePaper)
- [MDA: A Formal Approach to Game Design and Game Research](https://aaai.org/Library/Workshops/2004/ws04-04-001.php) (conferencePaper )
- [Exploring anonymity in cooperative board games](http://www.digra.org/digital-library/publications/exploring-anonymity-in-cooperative-board-games/) (conferencePaper 2011)
# General Gameplay
- [Player of Games](http://arxiv.org/abs/2112.03178) (journalArticle)
- [A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play](https://www.science.org/doi/10.1126/science.aar6404) (journalArticle)
- [Player of Games](http://arxiv.org/abs/2112.03178) (journalArticle 2021)
- [A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play](https://www.science.org/doi/10.1126/science.aar6404) (journalArticle 2018)
# Hanabi
- [How to Make the Perfect Fireworks Display: Two Strategies forHanabi](https://doi.org/10.4169%2Fmath.mag.88.5.323) (journalArticle)
- [Evaluating and modelling Hanabi-playing agents](https://doi.org/10.1109%2Fcec.2017.7969465) (conferencePaper)
- [The Hanabi challenge: A new frontier for AI research](https://doi.org/10.1016%2Fj.artint.2019.103216) (journalArticle)
- [The 2018 Hanabi competition](https://doi.org/10.1109%2Fcig.2019.8848008) (conferencePaper)
- [Diverse Agents for Ad-Hoc Cooperation in Hanabi](https://doi.org/10.1109%2Fcig.2019.8847944) (conferencePaper)
- [Improving Policies via Search in Cooperative Partially Observable Games](http://arxiv.org/abs/1912.02318v1) (journalArticle)
- [Hanabi is NP-hard, Even for Cheaters who Look at Their Cards](http://arxiv.org/abs/1603.01911v3) (journalArticle)
- [Generating and Adapting to Diverse Ad-Hoc Cooperation Agents in Hanabi](http://arxiv.org/abs/2004.13710v2) (journalArticle)
- [Evaluating the Rainbow DQN Agent in Hanabi with Unseen Partners](http://arxiv.org/abs/2004.13291v1) (journalArticle)
- [Re-determinizing MCTS in Hanabi]() (conferencePaper)
- [Evolving Agents for the Hanabi 2018 CIG Competition](https://ieeexplore.ieee.org/document/8490449/) (conferencePaper)
- [Aspects of the Cooperative Card Game Hanabi](http://link.springer.com/10.1007/978-3-319-67468-1_7) (bookSection)
- [Playing Hanabi Near-Optimally](http://link.springer.com/10.1007/978-3-319-71649-7_5) (bookSection)
- [An intentional AI for hanabi](http://ieeexplore.ieee.org/document/8080417/) (conferencePaper)
- [Solving Hanabi: Estimating Hands by Opponent's Actions in Cooperative Game with Incomplete Information](https://aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10167) (conferencePaper)
- [A Browser-based Interface for the Exploration and Evaluation of Hanabi AIs](http://fdg2017.org/papers/FDG2017_demo_Hanabi.pdf) (journalArticle)
- [I see what you see: Integrating eye tracking into Hanabi playing agents]() (journalArticle)
- [State of the art Hanabi bots + simulation framework in rust](https://github.com/WuTheFWasThat/hanabi.rs) (computerProgram)
- [A strategy simulator for the well-known cooperative card game Hanabi](https://github.com/rjtobin/HanSim) (computerProgram)
- [A framework for writing bots that play Hanabi](https://github.com/Quuxplusone/Hanabi) (computerProgram)
- [Operationalizing Intentionality to Play Hanabi with Human Players](https://ieeexplore.ieee.org/document/9140404/) (journalArticle)
- [Behavioral Evaluation of Hanabi Rainbow DQN Agents and Rule-Based Agents](https://ojs.aaai.org/index.php/AIIDE/article/view/7404) (journalArticle)
- [Playing mini-Hanabi card game with Q-learning](http://id.nii.ac.jp/1001/00205046/) (conferencePaper)
- [Hanabi Open Agent Dataset](https://github.com/aronsar/hoad) (computerProgram)
- [Hanabi Open Agent Dataset](https://dl.acm.org/doi/10.5555/3463952.3464188) (conferencePaper)
- [Evaluation of Human-AI Teams for Learned and Rule-Based Agents in Hanabi](https://arxiv.org/abs/2107.07630) (journalArticle)
- [Emergence of Cooperative Impression With Self-Estimation, Thinking Time, and Concordance of Risk Sensitivity in Playing Hanabi](https://www.frontiersin.org/articles/10.3389/frobt.2021.658348/full) (journalArticle)
- [K-level Reasoning for Zero-Shot Coordination in Hanabi](https://papers.neurips.cc/paper/2021/hash/4547dff5fd7604f18c8ee32cf3da41d7-Abstract.html) (conferencePaper)
- [Is Vanilla Policy Gradient Overlooked? Analyzing Deep Reinforcement Learning for Hanabi](http://arxiv.org/abs/2203.11656) (journalArticle)
- [Generating and Adapting to Diverse Ad-Hoc Partners in Hanabi](https://ieeexplore.ieee.org/document/9762901/) (journalArticle)
- [Theory of Mind for Multi-agent Coordination in Hanabi](http://fse.studenttheses.ub.rug.nl/id/eprint/28327) (thesis)
- [The Hanabi challenge: From Artificial Teams to Mixed Human-Machine Teams](http://oru.diva-portal.org/smash/record.jsf?pid=diva2%3A1691114&dswid=-1981) (thesis)
- [A Graphical User Interface For The Hanabi Challenge Benchmark](http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-94615) (thesis)
- [Analysis of Symmetry and Conventions in Off-Belief Learning (OBL) in Hanabi](https://fanpu.io/blog/2022/symmetry-and-conventions-in-obl-hanabi/) (blogPost)
- [Using intuitive behavior models to adapt to and work with human teammates in Hanabi](http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/usr/ftp/2022/abstracts/22-119.html) (thesis)
- [Behavioral Differences is the Key of Ad-hoc Team Cooperation in Multiplayer Games Hanabi](http://arxiv.org/abs/2303.06775) (preprint)
- [The Hidden Rules of Hanabi: How Humans Outperform AI Agents](https://dl.acm.org/doi/10.1145/3544548.3581550) (conferencePaper)
- [Towards Few-shot Coordination: Revisiting Ad-hoc Teamplay Challenge In the Game of Hanabi](http://arxiv.org/abs/2308.10284) (preprint)
- [How to Make the Perfect Fireworks Display: Two Strategies forHanabi](https://doi.org/10.4169%2Fmath.mag.88.5.323) (journalArticle 2015)
- [Evaluating and modelling Hanabi-playing agents](https://doi.org/10.1109%2Fcec.2017.7969465) (conferencePaper 2017)
- [The Hanabi challenge: A new frontier for AI research](https://doi.org/10.1016%2Fj.artint.2019.103216) (journalArticle 2020)
- [The 2018 Hanabi competition](https://doi.org/10.1109%2Fcig.2019.8848008) (conferencePaper 2019)
- [Diverse Agents for Ad-Hoc Cooperation in Hanabi](https://doi.org/10.1109%2Fcig.2019.8847944) (conferencePaper 2019)
- [Improving Policies via Search in Cooperative Partially Observable Games](http://arxiv.org/abs/1912.02318v1) (journalArticle 2019)
- [Hanabi is NP-hard, Even for Cheaters who Look at Their Cards](http://arxiv.org/abs/1603.01911v3) (journalArticle 2016)
- [Generating and Adapting to Diverse Ad-Hoc Cooperation Agents in Hanabi](http://arxiv.org/abs/2004.13710v2) (journalArticle 2020)
- [Evaluating the Rainbow DQN Agent in Hanabi with Unseen Partners](http://arxiv.org/abs/2004.13291v1) (journalArticle 2020)
- [Re-determinizing MCTS in Hanabi]() (conferencePaper 2019)
- [Evolving Agents for the Hanabi 2018 CIG Competition](https://ieeexplore.ieee.org/document/8490449/) (conferencePaper 2018)
- [Aspects of the Cooperative Card Game Hanabi](http://link.springer.com/10.1007/978-3-319-67468-1_7) (bookSection 2017)
- [Playing Hanabi Near-Optimally](http://link.springer.com/10.1007/978-3-319-71649-7_5) (bookSection 2017)
- [An intentional AI for hanabi](http://ieeexplore.ieee.org/document/8080417/) (conferencePaper 2017)
- [Solving Hanabi: Estimating Hands by Opponent's Actions in Cooperative Game with Incomplete Information](https://aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10167) (conferencePaper 2015)
- [A Browser-based Interface for the Exploration and Evaluation of Hanabi AIs](http://fdg2017.org/papers/FDG2017_demo_Hanabi.pdf) (journalArticle 2017)
- [I see what you see: Integrating eye tracking into Hanabi playing agents]() (journalArticle )
- [State of the art Hanabi bots + simulation framework in rust](https://github.com/WuTheFWasThat/hanabi.rs) (computerProgram )
- [A strategy simulator for the well-known cooperative card game Hanabi](https://github.com/rjtobin/HanSim) (computerProgram )
- [A framework for writing bots that play Hanabi](https://github.com/Quuxplusone/Hanabi) (computerProgram )
- [Operationalizing Intentionality to Play Hanabi with Human Players](https://ieeexplore.ieee.org/document/9140404/) (journalArticle 2020)
- [Behavioral Evaluation of Hanabi Rainbow DQN Agents and Rule-Based Agents](https://ojs.aaai.org/index.php/AIIDE/article/view/7404) (journalArticle 2020)
- [Playing mini-Hanabi card game with Q-learning](http://id.nii.ac.jp/1001/00205046/) (conferencePaper 2020)
- [Hanabi Open Agent Dataset](https://github.com/aronsar/hoad) (computerProgram )
- [Hanabi Open Agent Dataset](https://dl.acm.org/doi/10.5555/3463952.3464188) (conferencePaper )
- [Evaluation of Human-AI Teams for Learned and Rule-Based Agents in Hanabi](https://arxiv.org/abs/2107.07630) (journalArticle 2021)
- [Emergence of Cooperative Impression With Self-Estimation, Thinking Time, and Concordance of Risk Sensitivity in Playing Hanabi](https://www.frontiersin.org/articles/10.3389/frobt.2021.658348/full) (journalArticle 2021)
- [K-level Reasoning for Zero-Shot Coordination in Hanabi](https://papers.neurips.cc/paper/2021/hash/4547dff5fd7604f18c8ee32cf3da41d7-Abstract.html) (conferencePaper )
- [Is Vanilla Policy Gradient Overlooked? Analyzing Deep Reinforcement Learning for Hanabi](http://arxiv.org/abs/2203.11656) (journalArticle 2022)
- [Generating and Adapting to Diverse Ad-Hoc Partners in Hanabi](https://ieeexplore.ieee.org/document/9762901/) (journalArticle 2022)
- [Theory of Mind for Multi-agent Coordination in Hanabi](http://fse.studenttheses.ub.rug.nl/id/eprint/28327) (thesis 2022)
- [The Hanabi challenge: From Artificial Teams to Mixed Human-Machine Teams](http://oru.diva-portal.org/smash/record.jsf?pid=diva2%3A1691114&dswid=-1981) (thesis )
- [A Graphical User Interface For The Hanabi Challenge Benchmark](http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-94615) (thesis )
- [Analysis of Symmetry and Conventions in Off-Belief Learning (OBL) in Hanabi](https://fanpu.io/blog/2022/symmetry-and-conventions-in-obl-hanabi/) (blogPost )
- [Using intuitive behavior models to adapt to and work with human teammates in Hanabi](http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/usr/ftp/2022/abstracts/22-119.html) (thesis )
- [Behavioral Differences is the Key of Ad-hoc Team Cooperation in Multiplayer Games Hanabi](http://arxiv.org/abs/2303.06775) (preprint 2023)
- [The Hidden Rules of Hanabi: How Humans Outperform AI Agents](https://dl.acm.org/doi/10.1145/3544548.3581550) (conferencePaper 2023)
- [Towards Few-shot Coordination: Revisiting Ad-hoc Teamplay Challenge In the Game of Hanabi](http://arxiv.org/abs/2308.10284) (preprint 2023)
# Hearthstone
- [Mapping Hearthstone Deck Spaces through MAP-Elites with Sliding Boundaries](http://arxiv.org/abs/1904.10656) (journalArticle)
- [Multiplayer Tension In the Wild: A Hearthstone Case](https://research.tilburguniversity.edu/en/publications/multiplayer-tension-in-the-wild-a-hearthstone-case) (conferencePaper)
- [Improving Hearthstone AI by Combining MCTS and Supervised Learning Algorithms](http://arxiv.org/abs/1808.04794) (preprint)
- [Analysis of gameplay strategies in hearthstone: a data science approach](http://archives.njit.edu/vol01/etd/2020s/2020/njit-etd2020-006/njit-etd2020-006.pdf) (thesis)
- [Decision-Making in Hearthstone Based on Evolutionary Algorithm](https://www.cs.tsukuba.ac.jp/~hasebe/downloads/icaart2023_sakurai.pdf) (journalArticle)
- [I am a legend: Hacking hearthstone using statistical learning methods](http://ieeexplore.ieee.org/document/7860416/) (conferencePaper)
- [The Many AI Challenges of Hearthstone](http://link.springer.com/10.1007/s13218-019-00615-z) (journalArticle)
- [Evolutionary deckbuilding in hearthstone](http://ieeexplore.ieee.org/document/7860426/) (conferencePaper)
- [Evolving the Hearthstone Meta](http://arxiv.org/abs/1907.01623) (preprint)
- [Optimizing Hearthstone agents using an evolutionary algorithm](https://linkinghub.elsevier.com/retrieve/pii/S0950705119304356) (journalArticle)
- [Exploring the hearthstone deck space](https://dl.acm.org/doi/10.1145/3235765.3235791) (conferencePaper)
- [Computational Intelligence Techniques for Games with Incomplete Information](https://webthesis.biblio.polito.it/26844/) (thesis)
- [Perfect Information Hearthstone is PSPACE-hard](http://arxiv.org/abs/2305.12731) (preprint)
- [Summarizing Strategy Card Game AI Competition](http://arxiv.org/abs/2305.11814) (preprint)
- [Towards sample efficient deep reinforcement learning in collectible card games](https://linkinghub.elsevier.com/retrieve/pii/S1875952123000496) (journalArticle)
- [General-Purpose Planning Algorithms in the Card Game Duelyst II]() (conferencePaper)
- [Cards with Class: Formalizing a Simplified Collectible Card Game](https://pdxscholar.library.pdx.edu/honorstheses/1500) (thesis)
- [Means-end analysis decision making model in Santorini Board Game](http://repository.uph.edu/64385/) (thesis)
- [Mapping Hearthstone Deck Spaces through MAP-Elites with Sliding Boundaries](http://arxiv.org/abs/1904.10656) (journalArticle 2019)
- [Multiplayer Tension In the Wild: A Hearthstone Case](https://research.tilburguniversity.edu/en/publications/multiplayer-tension-in-the-wild-a-hearthstone-case) (conferencePaper 2023)
- [Improving Hearthstone AI by Combining MCTS and Supervised Learning Algorithms](http://arxiv.org/abs/1808.04794) (preprint 2018)
- [Analysis of gameplay strategies in hearthstone: a data science approach](http://archives.njit.edu/vol01/etd/2020s/2020/njit-etd2020-006/njit-etd2020-006.pdf) (thesis )
- [Decision-Making in Hearthstone Based on Evolutionary Algorithm](https://www.cs.tsukuba.ac.jp/~hasebe/downloads/icaart2023_sakurai.pdf) (journalArticle 2023)
- [I am a legend: Hacking hearthstone using statistical learning methods](http://ieeexplore.ieee.org/document/7860416/) (conferencePaper 2016)
- [The Many AI Challenges of Hearthstone](http://link.springer.com/10.1007/s13218-019-00615-z) (journalArticle 2020)
- [Evolutionary deckbuilding in hearthstone](http://ieeexplore.ieee.org/document/7860426/) (conferencePaper 2016)
- [Evolving the Hearthstone Meta](http://arxiv.org/abs/1907.01623) (preprint 2019)
- [Optimizing Hearthstone agents using an evolutionary algorithm](https://linkinghub.elsevier.com/retrieve/pii/S0950705119304356) (journalArticle 2020)
- [Exploring the hearthstone deck space](https://dl.acm.org/doi/10.1145/3235765.3235791) (conferencePaper 2018)
- [Computational Intelligence Techniques for Games with Incomplete Information](https://webthesis.biblio.polito.it/26844/) (thesis )
- [Perfect Information Hearthstone is PSPACE-hard](http://arxiv.org/abs/2305.12731) (preprint 2023)
- [Summarizing Strategy Card Game AI Competition](http://arxiv.org/abs/2305.11814) (preprint 2023)
- [Towards sample efficient deep reinforcement learning in collectible card games](https://linkinghub.elsevier.com/retrieve/pii/S1875952123000496) (journalArticle 2023)
- [General-Purpose Planning Algorithms in the Card Game Duelyst II]() (conferencePaper 2023)
- [Cards with Class: Formalizing a Simplified Collectible Card Game](https://pdxscholar.library.pdx.edu/honorstheses/1500) (thesis 2024)
- [Means-end analysis decision making model in Santorini Board Game](http://repository.uph.edu/64385/) (thesis )
# Hive
- [On the complexity of Hive](https://dspace.library.uu.nl/handle/1874/396955) (thesis)
- [The Cost of Reinforcement Learning for Game Engines: The AZ-Hive Case-study](https://dl.acm.org/doi/10.1145/3489525.3511685) (conferencePaper)
- [On the complexity of Hive](https://dspace.library.uu.nl/handle/1874/396955) (thesis 2020)
- [The Cost of Reinforcement Learning for Game Engines: The AZ-Hive Case-study](https://dl.acm.org/doi/10.1145/3489525.3511685) (conferencePaper 2022)
# Jenga
- [Jidoukan Jenga: Teaching English through remixing games and game rules](https://www.llpjournal.org/2020/04/13/jidokan-jenga.html) (journalArticle)
- [Maximum genus of the Jenga like configurations](http://arxiv.org/abs/1708.01503) (journalArticle)
- [Deep Instance Segmentation and Visual Servoing to Play Jenga with a Cost-Effective Robotic System](https://www.mdpi.com/1424-8220/23/2/752) (journalArticle)
- [Jidoukan Jenga: Teaching English through remixing games and game rules](https://www.llpjournal.org/2020/04/13/jidokan-jenga.html) (journalArticle 2020)
- [Maximum genus of the Jenga like configurations](http://arxiv.org/abs/1708.01503) (journalArticle 2018)
- [Deep Instance Segmentation and Visual Servoing to Play Jenga with a Cost-Effective Robotic System](https://www.mdpi.com/1424-8220/23/2/752) (journalArticle 2023)
# Kingdomino
- [Monte Carlo Methods for the Game Kingdomino](https://doi.org/10.1109%2Fcig.2018.8490419) (conferencePaper)
- [Monte Carlo Methods for the Game Kingdomino](http://arxiv.org/abs/1807.04458v2) (journalArticle)
- [NP-completeness of the game Kingdomino](http://arxiv.org/abs/1909.02849v3) (journalArticle)
- [Monte Carlo Methods for the Game Kingdomino](https://doi.org/10.1109%2Fcig.2018.8490419) (conferencePaper 2018)
- [Monte Carlo Methods for the Game Kingdomino](http://arxiv.org/abs/1807.04458v2) (journalArticle 2018)
- [NP-completeness of the game Kingdomino](http://arxiv.org/abs/1909.02849v3) (journalArticle 2019)
# Lost Cities
- [Applying Neural Networks and Genetic Programming to the Game Lost Cities](https://minds.wisconsin.edu/bitstream/handle/1793/79080/LydeenSpr18.pdf?sequence=1&isAllowed=y) (conferencePaper)
- [Applying Neural Networks and Genetic Programming to the Game Lost Cities](https://minds.wisconsin.edu/bitstream/handle/1793/79080/LydeenSpr18.pdf?sequence=1&isAllowed=y) (conferencePaper )
# Mafia
- [A mathematical model of the Mafia game](http://arxiv.org/abs/1009.1031v3) (journalArticle)
- [Automatic Long-Term Deception Detection in Group Interaction Videos](http://arxiv.org/abs/1905.08617) (journalArticle)
- [Human-Side Strategies in the Werewolf Game Against the Stealth Werewolf Strategy](http://link.springer.com/10.1007/978-3-319-50935-8_9) (bookSection)
- [A Theoretical Study of Mafia Games](http://arxiv.org/abs/0804.0071) (journalArticle)
- [A mathematical model of the Mafia game](http://arxiv.org/abs/1009.1031v3) (journalArticle 2010)
- [Automatic Long-Term Deception Detection in Group Interaction Videos](http://arxiv.org/abs/1905.08617) (journalArticle 2019)
- [Human-Side Strategies in the Werewolf Game Against the Stealth Werewolf Strategy](http://link.springer.com/10.1007/978-3-319-50935-8_9) (bookSection 2016)
- [A Theoretical Study of Mafia Games](http://arxiv.org/abs/0804.0071) (journalArticle 2008)
# Magic: The Gathering
- [Ensemble Determinization in Monte Carlo Tree Search for the Imperfect Information Card Game Magic: The Gathering](https://doi.org/10.1109%2Ftciaig.2012.2204883) (journalArticle)
- [Optimal Card-Collecting Strategies for Magic: The Gathering](https://doi.org/10.1080%2F07468342.2000.11974103) (journalArticle)
- [Monte Carlo search applied to card selection in Magic: The Gathering](https://doi.org/10.1109%2Fcig.2009.5286501) (conferencePaper)
- [Magic: the Gathering is as Hard as Arithmetic](http://arxiv.org/abs/2003.05119v1) (journalArticle)
- [Magic: The Gathering is Turing Complete](http://arxiv.org/abs/1904.09828v2) (journalArticle)
- [Neural Networks Models for Analyzing Magic: the Gathering Cards](http://arxiv.org/abs/1810.03744v1) (journalArticle)
- [Neural Networks Models for Analyzing Magic: The Gathering Cards](http://link.springer.com/10.1007/978-3-030-04179-3_20) (bookSection)
- [The Complexity of Deciding Legality of a Single Step of Magic: The Gathering](https://livrepository.liverpool.ac.uk/3029568/) (conferencePaper)
- [Magic: The Gathering in Common Lisp](https://vixra.org/abs/2001.0065) (conferencePaper)
- [Magic: The Gathering in Common Lisp](https://github.com/jeffythedragonslayer/maglisp) (computerProgram)
- [Mathematical programming and Magic: The Gathering](https://commons.lib.niu.edu/handle/10843/19194) (thesis)
- [Deck Construction Strategies for Magic: The Gathering](https://www.doi.org/10.1685/CSC06077) (conferencePaper)
- [Deckbuilding in Magic: The Gathering Using a Genetic Algorithm](https://doi.org/11250/2462429) (thesis)
- [Magic: The Gathering Deck Performance Prediction](http://cs229.stanford.edu/proj2012/HauPlotkinTran-MagicTheGatheringDeckPerformancePrediction.pdf) (report)
- [AI solutions for drafting in Magic: the Gathering](http://arxiv.org/abs/2009.00655) (journalArticle)
- [Ensemble Determinization in Monte Carlo Tree Search for the Imperfect Information Card Game Magic: The Gathering](https://doi.org/10.1109%2Ftciaig.2012.2204883) (journalArticle 2012)
- [Optimal Card-Collecting Strategies for Magic: The Gathering](https://doi.org/10.1080%2F07468342.2000.11974103) (journalArticle 2000)
- [Monte Carlo search applied to card selection in Magic: The Gathering](https://doi.org/10.1109%2Fcig.2009.5286501) (conferencePaper 2009)
- [Magic: the Gathering is as Hard as Arithmetic](http://arxiv.org/abs/2003.05119v1) (journalArticle 2020)
- [Magic: The Gathering is Turing Complete](http://arxiv.org/abs/1904.09828v2) (journalArticle 2019)
- [Neural Networks Models for Analyzing Magic: the Gathering Cards](http://arxiv.org/abs/1810.03744v1) (journalArticle 2018)
- [Neural Networks Models for Analyzing Magic: The Gathering Cards](http://link.springer.com/10.1007/978-3-030-04179-3_20) (bookSection 2018)
- [The Complexity of Deciding Legality of a Single Step of Magic: The Gathering](https://livrepository.liverpool.ac.uk/3029568/) (conferencePaper )
- [Magic: The Gathering in Common Lisp](https://vixra.org/abs/2001.0065) (conferencePaper )
- [Magic: The Gathering in Common Lisp](https://github.com/jeffythedragonslayer/maglisp) (computerProgram )
- [Mathematical programming and Magic: The Gathering](https://commons.lib.niu.edu/handle/10843/19194) (thesis )
- [Deck Construction Strategies for Magic: The Gathering](https://www.doi.org/10.1685/CSC06077) (conferencePaper )
- [Deckbuilding in Magic: The Gathering Using a Genetic Algorithm](https://doi.org/11250/2462429) (thesis )
- [Magic: The Gathering Deck Performance Prediction](http://cs229.stanford.edu/proj2012/HauPlotkinTran-MagicTheGatheringDeckPerformancePrediction.pdf) (report )
- [AI solutions for drafting in Magic: the Gathering](http://arxiv.org/abs/2009.00655) (journalArticle 2021)
# Mobile Games
- [Trainyard is NP-Hard](http://arxiv.org/abs/1603.00928v1) (journalArticle)
- [Threes!, Fives, 1024!, and 2048 are Hard](http://arxiv.org/abs/1505.04274v1) (journalArticle)
- [Rikudo is NP-complete](https://linkinghub.elsevier.com/retrieve/pii/S0304397522000457) (journalArticle)
- [Trainyard is NP-Hard](http://arxiv.org/abs/1603.00928v1) (journalArticle 2016)
- [Threes!, Fives, 1024!, and 2048 are Hard](http://arxiv.org/abs/1505.04274v1) (journalArticle 2015)
- [Rikudo is NP-complete](https://linkinghub.elsevier.com/retrieve/pii/S0304397522000457) (journalArticle 2022)
# Modern Art: The card game
- [A constraint programming based solver for Modern Art](https://github.com/captn3m0/modernart) (computerProgram)
- [A constraint programming based solver for Modern Art](https://github.com/captn3m0/modernart) (computerProgram )
# Monopoly
- [Monopoly as a Markov Process](https://doi.org/10.1080%2F0025570x.1972.11976187) (journalArticle)
- [Learning Monopoly Gameplay: A Hybrid Model-Free Deep Reinforcement Learning and Imitation Learning Approach](http://arxiv.org/abs/2103.00683) (journalArticle)
- [Negotiation strategy of agents in the MONOPOLY game](http://ieeexplore.ieee.org/document/1013210/) (conferencePaper)
- [Generating interesting Monopoly boards from open data](http://ieeexplore.ieee.org/document/6374168/) (conferencePaper)
- [Estimating the probability that the game of Monopoly never ends](http://ieeexplore.ieee.org/document/5429349/) (conferencePaper)
- [Learning to Play Monopoly with Monte Carlo Tree Search](https://project-archive.inf.ed.ac.uk/ug4/20181042/ug4_proj.pdf) (report)
- [Monopoly Using Reinforcement Learning](https://ieeexplore.ieee.org/document/8929523/) (conferencePaper)
- [A Markovian Exploration of Monopoly](https://pi4.math.illinois.edu/wp-content/uploads/2014/10/Gartland-Burson-Ferguson-Markovopoly.pdf) (report)
- [Learning to play Monopoly: A Reinforcement Learning approach](https://intelligence.csd.auth.gr/publication/conference-papers/learning-to-play-monopoly-a-reinforcement-learning-approach/) (conferencePaper)
- [What’s the Best Monopoly Strategy?](https://core.ac.uk/download/pdf/48614184.pdf) (presentation)
- [Monopoly as a Markov Process](https://doi.org/10.1080%2F0025570x.1972.11976187) (journalArticle 1972)
- [Learning Monopoly Gameplay: A Hybrid Model-Free Deep Reinforcement Learning and Imitation Learning Approach](http://arxiv.org/abs/2103.00683) (journalArticle 2021)
- [Negotiation strategy of agents in the MONOPOLY game](http://ieeexplore.ieee.org/document/1013210/) (conferencePaper 2001)
- [Generating interesting Monopoly boards from open data](http://ieeexplore.ieee.org/document/6374168/) (conferencePaper 2012)
- [Estimating the probability that the game of Monopoly never ends](http://ieeexplore.ieee.org/document/5429349/) (conferencePaper 2009)
- [Learning to Play Monopoly with Monte Carlo Tree Search](https://project-archive.inf.ed.ac.uk/ug4/20181042/ug4_proj.pdf) (report )
- [Monopoly Using Reinforcement Learning](https://ieeexplore.ieee.org/document/8929523/) (conferencePaper 2019)
- [A Markovian Exploration of Monopoly](https://pi4.math.illinois.edu/wp-content/uploads/2014/10/Gartland-Burson-Ferguson-Markovopoly.pdf) (report )
- [Learning to play Monopoly: A Reinforcement Learning approach](https://intelligence.csd.auth.gr/publication/conference-papers/learning-to-play-monopoly-a-reinforcement-learning-approach/) (conferencePaper )
- [What’s the Best Monopoly Strategy?](https://core.ac.uk/download/pdf/48614184.pdf) (presentation )
# Monopoly Deal
- [Implementation of Artificial Intelligence with 3 Different Characters of AI Player on “Monopoly Deal” Computer Game](https://doi.org/10.1007%2F978-3-662-46742-8_11) (bookSection)
- [Implementation of Artificial Intelligence with 3 Different Characters of AI Player on “Monopoly Deal” Computer Game](https://doi.org/10.1007%2F978-3-662-46742-8_11) (bookSection 2015)
# Netrunner
- [Netrunner Mate-in-1 or -2 is Weakly NP-Hard](http://arxiv.org/abs/1710.05121) (journalArticle)
- [Netrunner Mate-in-1 or -2 is Weakly NP-Hard](http://arxiv.org/abs/1710.05121) (journalArticle 2017)
# Nmbr9
- [Nmbr9 as a Constraint Programming Challenge](http://arxiv.org/abs/2001.04238) (journalArticle)
- [Nmbr9 as a Constraint Programming Challenge](https://zayenz.se/blog/post/nmbr9-cp2019-abstract/) (blogPost)
- [Nmbr9 as a Constraint Programming Challenge](http://arxiv.org/abs/2001.04238) (journalArticle 2020)
- [Nmbr9 as a Constraint Programming Challenge](https://zayenz.se/blog/post/nmbr9-cp2019-abstract/) (blogPost )
# Pandemic
- [NP-Completeness of Pandemic](https://www.jstage.jst.go.jp/article/ipsjjip/20/3/20_723/_article) (journalArticle)
- [NP-Completeness of Pandemic](https://www.jstage.jst.go.jp/article/ipsjjip/20/3/20_723/_article) (journalArticle 2012)
# Patchwork
- [State Representation and Polyomino Placement for the Game Patchwork](https://zayenz.se/blog/post/patchwork-modref2019-paper/) (blogPost)
- [State Representation and Polyomino Placement for the Game Patchwork](http://arxiv.org/abs/2001.04233) (journalArticle)
- [State Representation and Polyomino Placement for the Game Patchwork](https://zayenz.se/papers/Lagerkvist_ModRef_2019_Presentation.pdf) (presentation)
- [State Representation and Polyomino Placement for the Game Patchwork](https://zayenz.se/blog/post/patchwork-modref2019-paper/) (blogPost )
- [State Representation and Polyomino Placement for the Game Patchwork](http://arxiv.org/abs/2001.04233) (journalArticle 2020)
- [State Representation and Polyomino Placement for the Game Patchwork](https://zayenz.se/papers/Lagerkvist_ModRef_2019_Presentation.pdf) (presentation )
# Pentago
- [On Solving Pentago](http://www.ke.tu-darmstadt.de/lehre/arbeiten/bachelor/2011/Buescher_Niklas.pdf) (thesis)
- [Pentago is a First Player Win: Strongly Solving a Game Using Parallel In-Core Retrograde Analysis](http://arxiv.org/abs/1404.0743) (journalArticle)
- [A massively parallel pentago solver](https://github.com/girving/pentago) (computerProgram)
- [An interactive explorer for perfect pentago play](https://perfect-pentago.net/) (computerProgram)
- [An Application of Machine Learning to the Board Game Pentago](http://cs229.stanford.edu/proj2012/HeonOetting-AnAppliactionOfMachineLearningToTheBoardGamePentago.pdf) (report)
- [Learning finite functions by neural networks : Evaluation of Pentago positions by convolutional neural networks](https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/251730) (report)
- [On Solving Pentago](http://www.ke.tu-darmstadt.de/lehre/arbeiten/bachelor/2011/Buescher_Niklas.pdf) (thesis )
- [Pentago is a First Player Win: Strongly Solving a Game Using Parallel In-Core Retrograde Analysis](http://arxiv.org/abs/1404.0743) (journalArticle 2014)
- [A massively parallel pentago solver](https://github.com/girving/pentago) (computerProgram )
- [An interactive explorer for perfect pentago play](https://perfect-pentago.net/) (computerProgram )
- [An Application of Machine Learning to the Board Game Pentago](http://cs229.stanford.edu/proj2012/HeonOetting-AnAppliactionOfMachineLearningToTheBoardGamePentago.pdf) (report )
- [Learning finite functions by neural networks : Evaluation of Pentago positions by convolutional neural networks](https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/251730) (report )
# Puerto Rico
- [Artificial Intelligence Techniques for the Puerto Rico Strategy Game](http://link.springer.com/10.1007/978-3-319-59394-4_8) (bookSection)
- [Artificial Intelligence Techniques for the Puerto Rico Strategy Game](http://link.springer.com/10.1007/978-3-319-59394-4_8) (bookSection 2018)
# Quixo
- [QUIXO is EXPTIME-complete](https://doi.org/10.1016%2Fj.ipl.2020.105995) (journalArticle)
- [Quixo Is Solved](http://arxiv.org/abs/2007.15895) (journalArticle)
- [QUIXO is EXPTIME-complete](https://doi.org/10.1016%2Fj.ipl.2020.105995) (journalArticle 2020)
- [Quixo Is Solved](http://arxiv.org/abs/2007.15895) (journalArticle 2020)
# Race for the Galaxy
- [SCOUT: A Case-Based Reasoning Agent for Playing Race for the Galaxy](https://doi.org/10.1007%2F978-3-319-61030-6_27) (bookSection)
- [Ludometrics: Luck, and How to Measure It](http://arxiv.org/abs/1811.00673) (journalArticle)
- [SCOUT: A Case-Based Reasoning Agent for Playing Race for the Galaxy](https://doi.org/10.1007%2F978-3-319-61030-6_27) (bookSection 2017)
- [Ludometrics: Luck, and How to Measure It](http://arxiv.org/abs/1811.00673) (journalArticle 2018)
# Resistance: Avalon
- [Finding Friend and Foe in Multi-Agent Games](http://arxiv.org/abs/1906.02330) (journalArticle)
- [Finding Friend and Foe in Multi-Agent Games](http://arxiv.org/abs/1906.02330) (journalArticle 2019)
# RISK
- [Mini-Risk: Strategies for a Simplified Board Game](https://doi.org/10.1057%2Fjors.1990.2) (journalArticle)
- [Learning the risk board game with classifier systems](https://doi.org/10.1145%2F508791.508904) (conferencePaper)
- [Markov Chains and the RISK Board Game](https://doi.org/10.1080%2F0025570x.1997.11996573) (journalArticle)
- [Markov Chains for the RISK Board Game Revisited](https://doi.org/10.1080%2F0025570x.2003.11953165) (journalArticle)
- [Planning an Endgame Move Set for the Game RISK: A Comparison of Search Algorithms](https://doi.org/10.1109%2Ftevc.2005.856211) (journalArticle)
- [An Intelligent Artificial Player for the Game of Risk](http://www.ke.tu-darmstadt.de/lehre/archiv/ss04/oberseminar/folien/Wolf_Michael-Slides.pdf) (presentation)
- [RISKy Business: An In-Depth Look at the Game RISK](https://scholar.rose-hulman.edu/rhumj/vol3/iss2/3) (journalArticle)
- [RISK Board Game ‐ Battle Outcome Analysis](http://www.c4i.gr/xgeorgio/docs/RISK-board-game%20_rev-3.pdf) (journalArticle)
- [A multi-agent system for playing the board game risk](http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3781) (thesis)
- [Monte Carlo Tree Search for Risk](https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-SAS-OCS-ORA-2020/MP-SAS-OCS-ORA-2020-WCM-01.pdf) (conferencePaper)
- [Wargaming with Monte-Carlo Tree Search](https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-SAS-OCS-ORA-2020/MP-SAS-OCS-ORA-2020-WCM-01P.pdf) (presentation)
- [Mini-Risk: Strategies for a Simplified Board Game](https://doi.org/10.1057%2Fjors.1990.2) (journalArticle 1990)
- [Learning the risk board game with classifier systems](https://doi.org/10.1145%2F508791.508904) (conferencePaper 2002)
- [Markov Chains and the RISK Board Game](https://doi.org/10.1080%2F0025570x.1997.11996573) (journalArticle 1997)
- [Markov Chains for the RISK Board Game Revisited](https://doi.org/10.1080%2F0025570x.2003.11953165) (journalArticle 2003)
- [Planning an Endgame Move Set for the Game RISK: A Comparison of Search Algorithms](https://doi.org/10.1109%2Ftevc.2005.856211) (journalArticle 2005)
- [An Intelligent Artificial Player for the Game of Risk](http://www.ke.tu-darmstadt.de/lehre/archiv/ss04/oberseminar/folien/Wolf_Michael-Slides.pdf) (presentation 2005)
- [RISKy Business: An In-Depth Look at the Game RISK](https://scholar.rose-hulman.edu/rhumj/vol3/iss2/3) (journalArticle )
- [RISK Board Game ‐ Battle Outcome Analysis](http://www.c4i.gr/xgeorgio/docs/RISK-board-game%20_rev-3.pdf) (journalArticle )
- [A multi-agent system for playing the board game risk](http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3781) (thesis 2005)
- [Monte Carlo Tree Search for Risk](https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-SAS-OCS-ORA-2020/MP-SAS-OCS-ORA-2020-WCM-01.pdf) (conferencePaper 2021)
- [Wargaming with Monte-Carlo Tree Search](https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-SAS-OCS-ORA-2020/MP-SAS-OCS-ORA-2020-WCM-01P.pdf) (presentation 2021)
# Santorini
- [A Mathematical Analysis of the Game of Santorini](https://openworks.wooster.edu/independentstudy/8917/) (thesis)
- [A Mathematical Analysis of the Game of Santorini](https://github.com/carsongeissler/SantoriniIS) (computerProgram)
- [A Mathematical Analysis of the Game of Santorini](https://openworks.wooster.edu/independentstudy/8917/) (thesis )
- [A Mathematical Analysis of the Game of Santorini](https://github.com/carsongeissler/SantoriniIS) (computerProgram )
# Scotland Yard
- [The complexity of Scotland Yard](https://eprints.illc.uva.nl/id/eprint/193/1/PP-2006-18.text.pdf) (report)
- [The complexity of Scotland Yard](https://eprints.illc.uva.nl/id/eprint/193/1/PP-2006-18.text.pdf) (report )
# Secret Hitler
- [Competing in a Complex Hidden Role Game with Information Set Monte Carlo Tree Search](http://arxiv.org/abs/2005.07156) (journalArticle)
- [Competing in a Complex Hidden Role Game with Information Set Monte Carlo Tree Search](http://arxiv.org/abs/2005.07156) (journalArticle 2020)
# Set
- [Game, Set, Math](https://doi.org/10.4169%2Fmath.mag.85.2.083) (journalArticle)
- [The Joy of SET](https://doi.org/10.1080%2F00029890.2018.1412661) (journalArticle)
- [Game, Set, Math](https://doi.org/10.4169%2Fmath.mag.85.2.083) (journalArticle 2012)
- [The Joy of SET](https://doi.org/10.1080%2F00029890.2018.1412661) (journalArticle 2018)
# Settlers of Catan
- [The effectiveness of persuasion in The Settlers of Catan](https://doi.org/10.1109%2Fcig.2014.6932861) (conferencePaper)
- [Avoiding Revenge Using Optimal Opponent Ranking Strategy in the Board Game Catan](https://doi.org/10.4018%2Fijgcms.2018040103) (journalArticle)
- [Game strategies for The Settlers of Catan](https://doi.org/10.1109%2Fcig.2014.6932884) (conferencePaper)
- [Monte-Carlo Tree Search in Settlers of Catan](https://doi.org/10.1007%2F978-3-642-12993-3_3) (bookSection)
- [Deep Reinforcement Learning in Strategic Board Game Environments](https://doi.org/10.1007%2F978-3-030-14174-5_16) (bookSection)
- [Settlers of Catan bot trained using reinforcement learning](https://jonzia.github.io/Catan/) (computerProgram)
- [Trading in a multiplayer board game: Towards an analysis of non-cooperative dialogue](https://escholarship.org/uc/item/9zt506xx) (conferencePaper)
- [POMCP with Human Preferencesin Settlers of Catan](https://www.aaai.org/ocs/index.php/AIIDE/AIIDE18/paper/viewFile/18091/17217) (journalArticle)
- [The impact of loaded dice in Catan](https://izbicki.me/blog/how-to-cheat-at-settlers-of-catan-by-loading-the-dice-and-prove-it-with-p-values.html) (blogPost)
- [Monte Carlo Tree Search in a Modern Board Game Framework](https://project.dke.maastrichtuniversity.nl/games/files/bsc/Roelofs_Bsc-paper.pdf) (journalArticle)
- [Reinforcement Learning of Strategies for Settlers of Catan](https://www.researchgate.net/publication/228728063_Reinforcement_learning_of_strategies_for_Settlers_of_Catan) (conferencePaper)
- [Playing Catan with Cross-dimensional Neural Network](http://arxiv.org/abs/2008.07079) (journalArticle)
- [Strategic Dialogue Management via Deep Reinforcement Learning](http://arxiv.org/abs/1511.08099) (journalArticle)
- [Analysis of 'The Settlers of Catan' Using Markov Chains](https://repository.tcu.edu/handle/116099117/49062) (thesis)
- [Learning to Play Settlers of Catan with Deep Reinforcement Learning](https://settlers-rl.github.io/) (blogPost)
- [Using Ant Colony Optimisation for map generation and improving game balance in the Terra Mystica and Settlers of Catan board games](https://dl.acm.org/doi/10.1145/3402942.3409778) (conferencePaper)
- [The effectiveness of persuasion in The Settlers of Catan](https://doi.org/10.1109%2Fcig.2014.6932861) (conferencePaper 2014)
- [Avoiding Revenge Using Optimal Opponent Ranking Strategy in the Board Game Catan](https://doi.org/10.4018%2Fijgcms.2018040103) (journalArticle 2018)
- [Game strategies for The Settlers of Catan](https://doi.org/10.1109%2Fcig.2014.6932884) (conferencePaper 2014)
- [Monte-Carlo Tree Search in Settlers of Catan](https://doi.org/10.1007%2F978-3-642-12993-3_3) (bookSection 2010)
- [Deep Reinforcement Learning in Strategic Board Game Environments](https://doi.org/10.1007%2F978-3-030-14174-5_16) (bookSection 2019)
- [Settlers of Catan bot trained using reinforcement learning](https://jonzia.github.io/Catan/) (computerProgram )
- [Trading in a multiplayer board game: Towards an analysis of non-cooperative dialogue](https://escholarship.org/uc/item/9zt506xx) (conferencePaper 2012)
- [POMCP with Human Preferencesin Settlers of Catan](https://www.aaai.org/ocs/index.php/AIIDE/AIIDE18/paper/viewFile/18091/17217) (journalArticle )
- [The impact of loaded dice in Catan](https://izbicki.me/blog/how-to-cheat-at-settlers-of-catan-by-loading-the-dice-and-prove-it-with-p-values.html) (blogPost )
- [Monte Carlo Tree Search in a Modern Board Game Framework](https://project.dke.maastrichtuniversity.nl/games/files/bsc/Roelofs_Bsc-paper.pdf) (journalArticle )
- [Reinforcement Learning of Strategies for Settlers of Catan](https://www.researchgate.net/publication/228728063_Reinforcement_learning_of_strategies_for_Settlers_of_Catan) (conferencePaper 2004)
- [Playing Catan with Cross-dimensional Neural Network](http://arxiv.org/abs/2008.07079) (journalArticle 2020)
- [Strategic Dialogue Management via Deep Reinforcement Learning](http://arxiv.org/abs/1511.08099) (journalArticle 2015)
- [Analysis of 'The Settlers of Catan' Using Markov Chains](https://repository.tcu.edu/handle/116099117/49062) (thesis 2021)
- [Learning to Play Settlers of Catan with Deep Reinforcement Learning](https://settlers-rl.github.io/) (blogPost )
- [Using Ant Colony Optimisation for map generation and improving game balance in the Terra Mystica and Settlers of Catan board games](https://dl.acm.org/doi/10.1145/3402942.3409778) (conferencePaper 2020)
# Shobu
- [Shobu AI Playground](https://github.com/JayWalker512/Shobu) (computerProgram)
- [Shobu randomly played games dataset](https://www.kaggle.com/bsfoltz/shobu-randomly-played-games-104k) (webpage)
- [Shobu AI Playground](https://github.com/JayWalker512/Shobu) (computerProgram )
- [Shobu randomly played games dataset](https://www.kaggle.com/bsfoltz/shobu-randomly-played-games-104k) (webpage )
# Terra Mystica
- [Using Tabu Search Algorithm for Map Generation in the Terra Mystica Tabletop Game](https://doi.org/10.1145%2F3396474.3396492) (conferencePaper)
- [Mastering Terra Mystica: Applying Self-Play to Multi-agent Cooperative Board Games](http://arxiv.org/abs/2102.10540) (journalArticle)
- [TM AI: Play TM against AI players.](https://lodev.org/tmai/) (computerProgram)
- [Using Ant Colony Optimisation for map generation and improving game balance in the Terra Mystica and Settlers of Catan board games](https://dl.acm.org/doi/10.1145/3402942.3409778) (conferencePaper)
- [Map Generation and Balance in the Terra Mystica Board Game Using Particle Swarm and Local Search](http://link.springer.com/10.1007/978-3-030-53956-6_15) (bookSection)
- [Using Ant Colony Optimisation for map generation and improving game balance in the Terra Mystica and Settlers of Catan board games](https://dl.acm.org/doi/10.1145/3402942.3409778) (conferencePaper)
- [Using Tabu Search Algorithm for Map Generation in the Terra Mystica Tabletop Game](https://doi.org/10.1145%2F3396474.3396492) (conferencePaper 2020)
- [Mastering Terra Mystica: Applying Self-Play to Multi-agent Cooperative Board Games](http://arxiv.org/abs/2102.10540) (journalArticle 2021)
- [TM AI: Play TM against AI players.](https://lodev.org/tmai/) (computerProgram )
- [Using Ant Colony Optimisation for map generation and improving game balance in the Terra Mystica and Settlers of Catan board games](https://dl.acm.org/doi/10.1145/3402942.3409778) (conferencePaper 2020)
- [Map Generation and Balance in the Terra Mystica Board Game Using Particle Swarm and Local Search](http://link.springer.com/10.1007/978-3-030-53956-6_15) (bookSection 2020)
- [Using Ant Colony Optimisation for map generation and improving game balance in the Terra Mystica and Settlers of Catan board games](https://dl.acm.org/doi/10.1145/3402942.3409778) (conferencePaper 2020)
# Terraforming Mars
- [TAG: Terraforming Mars](https://ojs.aaai.org/index.php/AIIDE/article/view/18902) (journalArticle)
- [TAG: Terraforming Mars](https://ojs.aaai.org/index.php/AIIDE/article/view/18902) (journalArticle 2021)
# Tetris Link
- [A New Challenge: Approaching Tetris Link with AI](http://arxiv.org/abs/2004.00377) (journalArticle)
- [A New Challenge: Approaching Tetris Link with AI](http://arxiv.org/abs/2004.00377) (journalArticle 2020)
# Ticket to Ride
- [AI-based playtesting of contemporary board games](http://dl.acm.org/citation.cfm?doid=3102071.3102105) (conferencePaper)
- [Materials for Ticket to Ride Seattle and a framework for making more game boards](https://github.com/dovinmu/ttr_generator) (computerProgram)
- [The Difficulty of Learning Ticket to Ride](https://www.eecs.tufts.edu/~jsinapov/teaching/comp150_RL/reports/Nguyen_Dinjian_report.pdf) (report)
- [Evolving maps and decks for ticket to ride](https://dl.acm.org/doi/10.1145/3235765.3235813) (conferencePaper)
- [Applications of Graph Theory and Probability in the Board Game Ticket to Ride](https://www.rtealwitter.com/slides/2020-JMM.pdf) (presentation)
- [Ticket to Ride and Dijkstra’s algorithm](https://theboardgamescholar.com/2020/12/31/ticket-to-ride-and-dijkstras-algorithm/) (blogPost)
- [Ticket to Ride and the Traveling Salesperson Problem.](https://theboardgamescholar.com/2021/02/27/ticket-to-ride-the-traveling-salesperson-problem/) (blogPost)
- [AI-based playtesting of contemporary board games](http://dl.acm.org/citation.cfm?doid=3102071.3102105) (conferencePaper 2017)
- [Materials for Ticket to Ride Seattle and a framework for making more game boards](https://github.com/dovinmu/ttr_generator) (computerProgram )
- [The Difficulty of Learning Ticket to Ride](https://www.eecs.tufts.edu/~jsinapov/teaching/comp150_RL/reports/Nguyen_Dinjian_report.pdf) (report )
- [Evolving maps and decks for ticket to ride](https://dl.acm.org/doi/10.1145/3235765.3235813) (conferencePaper 2018)
- [Applications of Graph Theory and Probability in the Board Game Ticket to Ride](https://www.rtealwitter.com/slides/2020-JMM.pdf) (presentation 2020)
- [Ticket to Ride and Dijkstra’s algorithm](https://theboardgamescholar.com/2020/12/31/ticket-to-ride-and-dijkstras-algorithm/) (blogPost )
- [Ticket to Ride and the Traveling Salesperson Problem.](https://theboardgamescholar.com/2021/02/27/ticket-to-ride-the-traveling-salesperson-problem/) (blogPost )
# Ultimate Tic-Tac-Toe
- [At Most 43 Moves, At Least 29: Optimal Strategies and Bounds for Ultimate Tic-Tac-Toe](http://arxiv.org/abs/2006.02353) (journalArticle)
- [At Most 43 Moves, At Least 29: Optimal Strategies and Bounds for Ultimate Tic-Tac-Toe](http://arxiv.org/abs/2006.02353) (journalArticle 2020)
# UNO
- [UNO Is Hard, Even for a Single Player](https://doi.org/10.1007%2F978-3-642-13122-6_15) (bookSection)
- [The complexity of UNO](http://arxiv.org/abs/1003.2851v3) (journalArticle)
- [UNO Is Hard, Even for a Single Player](https://doi.org/10.1007%2F978-3-642-13122-6_15) (bookSection 2010)
- [The complexity of UNO](http://arxiv.org/abs/1003.2851v3) (journalArticle 2010)
# Yahtzee
- [Nearly Optimal Computer Play in Multi-player Yahtzee](https://doi.org/10.1007%2F978-3-642-17928-0_23) (bookSection)
- [Computer Strategies for Solitaire Yahtzee](https://doi.org/10.1109%2Fcig.2007.368089) (conferencePaper)
- [Modeling expert problem solving in a game of chance: a Yahtzeec case study](https://doi.org/10.1111%2F1468-0394.00160) (journalArticle)
- [Probabilites In Yahtzee](https://pubs.nctm.org/view/journals/mt/75/9/article-p751.xml) (journalArticle)
- [Optimal Solitaire Yahtzee Strategies](http://www.yahtzee.org.uk/optimal_yahtzee_TV.pdf) (presentation)
- [Yahtzee: a Large Stochastic Environment for RL Benchmarks](http://researchers.lille.inria.fr/~lazaric/Webpage/PublicationsByTopic_files/bonarini2005yahtzee.pdf) (journalArticle)
- [Optimal Yahtzee performance in multi-player games](https://www.csc.kth.se/utbildning/kth/kurser/DD143X/dkand13/Group4Per/report/12-serra-widell-nigata.pdf) (thesis)
- [How to Maximize Your Score in Solitaire Yahtzee](http://www-set.win.tue.nl/~wstomv/misc/yahtzee/yahtzee-report-unfinished.pdf) (manuscript)
- [Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee](https://raw.githubusercontent.com/philvasseur/Yahtzee-DQN-Thesis/dcf2bfe15c3b8c0ff3256f02dd3c0aabdbcbc9bb/webpage/final_report.pdf) (thesis)
- [Defensive Yahtzee](http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168668) (report)
- [An Optimal Strategy for Yahtzee](http://www.cs.loyola.edu/~jglenn/research/optimal_yahtzee.pdf) (report)
- [Let’s Get Rolling! Exact Optimal Solitaire Yahtzee](https://www.tandfonline.com/doi/full/10.1080/0025570X.2022.2055334) (journalArticle)
- [Nearly Optimal Computer Play in Multi-player Yahtzee](https://doi.org/10.1007%2F978-3-642-17928-0_23) (bookSection 2011)
- [Computer Strategies for Solitaire Yahtzee](https://doi.org/10.1109%2Fcig.2007.368089) (conferencePaper 2007)
- [Modeling expert problem solving in a game of chance: a Yahtzeec case study](https://doi.org/10.1111%2F1468-0394.00160) (journalArticle 2001)
- [Probabilites In Yahtzee](https://pubs.nctm.org/view/journals/mt/75/9/article-p751.xml) (journalArticle 1982)
- [Optimal Solitaire Yahtzee Strategies](http://www.yahtzee.org.uk/optimal_yahtzee_TV.pdf) (presentation )
- [Yahtzee: a Large Stochastic Environment for RL Benchmarks](http://researchers.lille.inria.fr/~lazaric/Webpage/PublicationsByTopic_files/bonarini2005yahtzee.pdf) (journalArticle )
- [Optimal Yahtzee performance in multi-player games](https://www.csc.kth.se/utbildning/kth/kurser/DD143X/dkand13/Group4Per/report/12-serra-widell-nigata.pdf) (thesis 2013)
- [How to Maximize Your Score in Solitaire Yahtzee](http://www-set.win.tue.nl/~wstomv/misc/yahtzee/yahtzee-report-unfinished.pdf) (manuscript )
- [Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee](https://raw.githubusercontent.com/philvasseur/Yahtzee-DQN-Thesis/dcf2bfe15c3b8c0ff3256f02dd3c0aabdbcbc9bb/webpage/final_report.pdf) (thesis 2019)
- [Defensive Yahtzee](http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168668) (report )
- [An Optimal Strategy for Yahtzee](http://www.cs.loyola.edu/~jglenn/research/optimal_yahtzee.pdf) (report )
- [Let’s Get Rolling! Exact Optimal Solitaire Yahtzee](https://www.tandfonline.com/doi/full/10.1080/0025570X.2022.2055334) (journalArticle 2022)
# Similar Projects
- https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers
@@ -13033,7 +13033,7 @@
IDA* performs best with respect to memory consumption, but at the expense of running time and is
generally slower than the two former approaches. The integer programming approach performs worst
on all metrics.</dcterms:abstract>
<dc:date>10.07.2023</dc:date>
<dc:date>2023-07-10</dc:date>
<z:language>en</z:language>
<z:shortTitle>Exact Approaches for Flood-i</z:shortTitle>
<dc:identifier>
@@ -16,10 +16,8 @@
standalone="yes"
indent="no"
/>
<xsl:template match = "/">
<!-- <xsl:text>**Table of Contents**</xsl:text> -->
<xsl:for-each select="rdf:RDF/z:Collection">
<xsl:text> # </xsl:text><xsl:value-of select = "dc:title"/>
<!-- Newline -->
@@ -30,12 +28,60 @@
<xsl:value-of select="../../*[@rdf:about=current()/@rdf:resource]//dcterms:URI/rdf:value" />
<xsl:text>) (</xsl:text>
<xsl:value-of select="../../*[@rdf:about=current()/@rdf:resource]/z:itemType" />
<xsl:text> </xsl:text>
<!-- Extract year from date using different patterns -->
<xsl:variable name="fullDate" select="../../*[@rdf:about=current()/@rdf:resource]/dc:date" />
<!-- Try to extract year using different patterns -->
<xsl:choose>
<!-- Match YYYY-MM-DD pattern -->
<xsl:when test="string-length($fullDate) >= 4 and string(number(substring($fullDate, 1, 4))) != 'NaN'">
<xsl:value-of select="substring($fullDate, 1, 4)"/>
</xsl:when>
<!-- Match DD.MM.YYYY pattern -->
<xsl:when test="string-length($fullDate) >= 10 and contains($fullDate, '.') and string(number(substring($fullDate, string-length($fullDate)-3, 4))) != 'NaN'">
<xsl:value-of select="substring($fullDate, string-length($fullDate)-3, 4)"/>
</xsl:when>
<!-- Match DD/MM/YYYY pattern -->
<xsl:when test="string-length($fullDate) >= 10 and contains($fullDate, '/') and string(number(substring($fullDate, string-length($fullDate)-3, 4))) != 'NaN'">
<xsl:value-of select="substring($fullDate, string-length($fullDate)-3, 4)"/>
</xsl:when>
<!-- Match MM/YYYY pattern -->
<xsl:when test="string-length($fullDate) >= 7 and contains($fullDate, '/') and string(number(substring-after($fullDate, '/'))) != 'NaN'">
<xsl:value-of select="substring-after($fullDate, '/')"/>
</xsl:when>
<!-- Match "Month YYYY" or "Month DD, YYYY" pattern -->
<xsl:when test="contains($fullDate, ',')">
<xsl:value-of select="normalize-space(substring-after($fullDate, ','))"/>
</xsl:when>
<!-- Match "Month YYYY" without comma -->
<xsl:when test="string-length($fullDate) >= 4">
<!-- Look for the last 4 digits that could be a year -->
<xsl:variable name="lastFour" select="substring($fullDate, string-length($fullDate)-3, 4)"/>
<xsl:choose>
<xsl:when test="string(number($lastFour)) != 'NaN'">
<xsl:value-of select="$lastFour"/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="$fullDate"/>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<!-- Fallback to original date if no pattern matches -->
<xsl:otherwise>
<xsl:value-of select="$fullDate"/>
</xsl:otherwise>
</xsl:choose>
<xsl:text>)</xsl:text>
<!-- <xsl:text> </xsl:text> -->
</xsl:for-each>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>
</xsl:stylesheet>