mirror of
https://github.com/captn3m0/boardgame-research.git
synced 2024-09-10 13:46:38 +00:00
Mooooaaar games
This commit is contained in:
parent
f67c4c35e2
commit
760ecf2f61
62
README.md
62
README.md
@ -4,7 +4,9 @@ This is a list of boardgame research. They are primarily related to "solving/pla
|
||||
occasionaly about designing or meta-aspects of the game. This doesn't cover all aspects of each game (notably missing social-science stuff), but
|
||||
should be of interest to anyone interested in boardgames and their optimal play. While there is a ton of easily accessible research on games like
|
||||
Chess and Go, finding prior work on more contemporary games can be a bit hard. This list focuses on the latter. If you are interested in well-researched
|
||||
games like Chess, Go, Hex, take a look at the [Chess programming wiki](https://www.chessprogramming.org/Games) instead.
|
||||
games like Chess, Go, Hex, take a look at the [Chess programming wiki](https://www.chessprogramming.org/Games) instead. The list also covers some computer-games that fall under similar themes.
|
||||
|
||||
If you aren't able to access any paper on this list, please [try using Sci-Hub](https://en.m.wikipedia.org/wiki/Sci-Hub) or [reach out to me](https://captnemo.in/contact/).
|
||||
|
||||
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
|
||||
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
|
||||
@ -17,18 +19,24 @@ games like Chess, Go, Hex, take a look at the [Chess programming wiki](https://w
|
||||
- [Patchwork](#patchwork)
|
||||
- [Nmbr9](#nmbr9)
|
||||
- [Hanabi](#hanabi)
|
||||
- [Race for the galaxy](#race-for-the-galaxy)
|
||||
- [Monopoly](#monopoly)
|
||||
- [Magic: the Gathering](#magic-the-gathering)
|
||||
- [Terra Mystica](#terra-mystica)
|
||||
- [Mafia](#mafia)
|
||||
- [The Resistance: Avalon](#the-resistance-avalon)
|
||||
- [Ticket to Ride](#ticket-to-ride)
|
||||
- [Yahtzee](#yahtzee)
|
||||
- [Lost Cities](#lost-cities)
|
||||
- [Uno](#uno)
|
||||
- [Dominion](#dominion)
|
||||
- [Quixo](#quixo)
|
||||
- [Mobile Games](#mobile-games)
|
||||
- [Race for the Galaxy](#race-for-the-galaxy)
|
||||
- [Santorini](#santorini)
|
||||
- [Set](#set)
|
||||
- [Pentago](#pentago)
|
||||
- [Blokus](#blokus)
|
||||
- [Yahtzee](#yahtzee)
|
||||
- [2048](#2048)
|
||||
- [Game Design](#game-design)
|
||||
- [Frameworks/Toolkits](#frameworkstoolkits)
|
||||
@ -94,6 +102,9 @@ games like Chess, Go, Hex, take a look at the [Chess programming wiki](https://w
|
||||
- [A framework for writing bots that play Hanabi](https://github.com/Quuxplusone/Hanabi)
|
||||
- [Evaluating the Rainbow DQN Agent in Hanabi with Unseen Partners](https://arxiv.org/abs/2004.13291)
|
||||
|
||||
# Race for the galaxy
|
||||
- [SCOUT: A Case-Based Reasoning Agent for Playing Race for the Galaxy](https://link.springer.com/chapter/10.1007/978-3-319-61030-6_27)
|
||||
|
||||
# Monopoly
|
||||
- [Negotiation strategy of agents in the MONOPOLY game](https://ieeexplore.ieee.org/abstract/document/1013210)
|
||||
- [Generating interesting Monopoly boards from open data](https://ieeexplore.ieee.org/abstract/document/6374168)
|
||||
@ -135,19 +146,6 @@ games like Chess, Go, Hex, take a look at the [Chess programming wiki](https://w
|
||||
- [Applications of Graph Theory andProbability in the Board GameTicket toRide](https://www.rtealwitter.com/slides/2020-JMM.pdf)
|
||||
- [The Difficulty of Learning Ticket to Ride](https://www.eecs.tufts.edu/~jsinapov/teaching/comp150_RL/reports/Nguyen_Dinjian_report.pdf)
|
||||
|
||||
# Yahtzee
|
||||
- [Optimal Solitaire Yahtzee Strategies](http://www.yahtzee.org.uk/optimal_yahtzee_TV.pdf)
|
||||
- [Nearly Optimal Computer Play in Multi-player Yahtzee](https://doi.org/10.1007/978-3-642-17928-0_23)
|
||||
- [Computer Strategies for Solitaire Yahtzee](https://doi.org/10.1109/CIG.2007.368089)
|
||||
- [An optimal strategy for Yahtzee](http://www.cs.loyola.edu/~jglenn/research/optimal_yahtzee.pdf)
|
||||
- [Yahtzee: a Large Stochastic Environment for RL Benchmarks](https://pdfs.semanticscholar.org/f5c2/e9c9b17f584f060a73036109f697ac819a23.pdf)
|
||||
- [Modeling expert problem solving in a game of chance: a Yahtzee case study](https://doi.org/10.1111/1468-0394.00160)
|
||||
- [Probabilites In Yahtzee](https://doi.org/10.5951/MT.75.9.0751)
|
||||
- [Optimal Yahtzee performance in multi-player games](https://www.diva-portal.org/smash/get/diva2:668705/FULLTEXT01.pdf)
|
||||
- [Defensive Yahtzee](https://www.diva-portal.org/smash/get/diva2:817838/FULLTEXT01.pdf)
|
||||
- [Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee](https://pdfs.semanticscholar.org/6bec/1c34c8ace65adc95d39cb0c0e589ae392678.pdf)
|
||||
- [How to Maximize Your Score in Solitaire Yahtzee](http://www-set.win.tue.nl/~wstomv/misc/yahtzee/yahtzee-report-unfinished.pdf)
|
||||
|
||||
# Lost Cities
|
||||
- [Applying Neural Networks and Genetic Programming to the Game Lost Cities](http://digital.library.wisc.edu/1793/79080)
|
||||
|
||||
@ -163,13 +161,44 @@ There is a [simulator](https://dominionsimulator.wordpress.com/f-a-q/) and the c
|
||||
- [Clustering Player Strategies from Variable-Length Game Logs in Dominion](https://arxiv.org/abs/1811.11273)
|
||||
|
||||
# Quixo
|
||||
|
||||
- [QUIXO is EXPTIME-complete](https://doi.org/10.1016/j.ipl.2020.105995)
|
||||
|
||||
# Mobile Games
|
||||
- [Trainyard is NP-Hard](https://arxiv.org/abs/1603.00928)
|
||||
- [Threes!, Fives, 1024!, and 2048 are Hard](https://arxiv.org/abs/1505.04274)
|
||||
|
||||
# Race for the Galaxy
|
||||
- [SCOUT: A Case-Based Reasoning Agent for Playing Race for the Galaxy](https://doi.org/10.1007/978-3-319-61030-6_27)
|
||||
|
||||
# Santorini
|
||||
- [A Mathematical Analysis of the Game of Santorini](https://openworks.wooster.edu/independentstudy/8917/)
|
||||
|
||||
# Set
|
||||
|
||||
Set has a long history of mathematical research, so this list isn't exhaustive.
|
||||
|
||||
- [Game, Set, Math](https://doi.org/10.4169/math.mag.85.2.083)
|
||||
- [The Joy of SET](https://doi.org/10.1080/00029890.2018.1412661)
|
||||
|
||||
# Pentago
|
||||
- [On Solving Pentago](http://www.ke.tu-darmstadt.de/lehre/arbeiten/bachelor/2011/Buescher_Niklas.pdf)
|
||||
|
||||
# Blokus
|
||||
- [Blokus Game Solver](https://digitalcommons.calpoly.edu/cpesp/290/)
|
||||
|
||||
# Yahtzee
|
||||
- [Optimal Solitaire Yahtzee Strategies](http://www.yahtzee.org.uk/optimal_yahtzee_TV.pdf)
|
||||
- [Nearly Optimal Computer Play in Multi-player Yahtzee](https://doi.org/10.1007/978-3-642-17928-0_23)
|
||||
- [Computer Strategies for Solitaire Yahtzee](https://doi.org/10.1109/CIG.2007.368089)
|
||||
- [An optimal strategy for Yahtzee](http://www.cs.loyola.edu/~jglenn/research/optimal_yahtzee.pdf)
|
||||
- [Yahtzee: a Large Stochastic Environment for RL Benchmarks](https://pdfs.semanticscholar.org/f5c2/e9c9b17f584f060a73036109f697ac819a23.pdf)
|
||||
- [Modeling expert problem solving in a game of chance: a Yahtzee case study](https://doi.org/10.1111/1468-0394.00160)
|
||||
- [Probabilites In Yahtzee](https://doi.org/10.5951/MT.75.9.0751)
|
||||
- [Optimal Yahtzee performance in multi-player games](https://www.diva-portal.org/smash/get/diva2:668705/FULLTEXT01.pdf)
|
||||
- [Defensive Yahtzee](https://www.diva-portal.org/smash/get/diva2:817838/FULLTEXT01.pdf)
|
||||
- [Using Deep Q-Learning to Compare Strategy Ladders of Yahtzee](https://pdfs.semanticscholar.org/6bec/1c34c8ace65adc95d39cb0c0e589ae392678.pdf)
|
||||
- [How to Maximize Your Score in Solitaire Yahtzee](http://www-set.win.tue.nl/~wstomv/misc/yahtzee/yahtzee-report-unfinished.pdf)
|
||||
|
||||
## 2048
|
||||
- [Making Change in 2048](https://arxiv.org/abs/1804.07396)
|
||||
- [Analysis of the Game "2048" and its Generalization in Higher Dimensions](https://arxiv.org/abs/1804.07393)
|
||||
@ -184,6 +213,7 @@ There is a [simulator](https://dominionsimulator.wordpress.com/f-a-q/) and the c
|
||||
|
||||
# Game Design
|
||||
- [MDA: A Formal Approach to Game Design and Game Research ](https://www.aaai.org/Papers/Workshops/2004/WS-04-04/WS04-04-001.pdf)
|
||||
- [Exploring Anonymity in Cooperative Board Games](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.225.5554&rep=rep1&type=pdf)
|
||||
|
||||
# Frameworks/Toolkits
|
||||
- [RLCard: A Toolkit for Reinforcement Learning in Card Games](https://arxiv.org/abs/1910.04376)
|
Loading…
Reference in New Issue
Block a user